o L SCURTR TR TRTRY ‘.."‘»' -

AD-A166 492

- ——

W FICE COPY

ARL-TR-85-32

LarAy

Copy No. /2

NONLINEAR EFFECTS IN LONG RANGE
UNDERWATER ACOUSTIC PROPAGATION

Frederick D. Cotaras

APPLIED RESEARCH LABORATORIES
THE UNIVERSITY OF TEXAS AT AUSTIN
POST OFFICE BOX 8029, AUSTIN, TEXAS 78713-8029

1 November 1985 eLECTE
Technical Report m 0 . m
G/
1 n_.
Approved for public release; - s
distribution unlimited.
Prepared for:
OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ARLINGTON, VA 22217
': \;t; ';?t‘;a ‘ L 2!

]

. 1

L

9
o A

1
s {
o |
) 5
LR
e
R
. 1
4

) g
. . 4
o ]
NN
_,. 4
| \

Y. U



e e, ST

% = UNCLASSIFIED ' 2

SECURLITY CLASSIFICATION OF THIS PAGE (When Date Entered)

i REPORT DOCUMENTATION PAGE e Cbr T ONS R
av"':', [T REPORT NUMBER . 2. GOYT A caou NO] 3, RECIPIENT'S CATALOG NUMBER |
i AD-AlL G192
}":’ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
e t h i

A NONLINEAR EFFECTS IN LONG RANGE UNDERWATER e:“"mi:fm":f::';w —
::: 7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(s)

' N00014-75-C-0867

o Frederick D. Cotaras N00014-84-K-0574

:Z: 9. PER.FORMlNG ORGANIZFION NAME AD.CD ADORESS 10. ::gGRAMOE“LKE:&:‘TTN'Ll:‘OBJEECs‘I’ TASK
kL Applied Research Laboratories 61153N

bt The University of Texas at Austin RRO11-08-01

. Austin, Texas 78713-8029 NR 384-317

) 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

;ﬁ 0ffice of Naval Research 1 November 1985

" Department of the Navy T3, NUMBER OF PAGES

o Arlington, Virginia 22217 217

"‘:'.‘ . MONITORING AGENCY NAME & ADDRESS(i! dilferent from Controlling Otfice) 18. SECURITY CLASS. (of this report)

Lh

S UNCLASSIFIED

y [ 15a. DECL ASSIFICATION/ DOWNGRADING
s SCHEDULE

4 16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

]
?’; 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different trom Report)

‘.i. 18. SUPPLEMENTARY NOTES

PR

\

X

19. KEY WORDS (Continue on reverae aide if necessery and identily by dlock number)

:i underwater explosions numerical model

b ray theory finite amplitude effects

! ' long range underwater propagation

= L eikonal equation

::I K 20. ABSTRACT (Comlnuo °T rovcuo(udo if necessary end identily by block number)

" f‘ - 3 . e, 17Ny 4 ey

f In th1s report«tﬁe propagation of finite amplitude acoustic signals through an
a inhomogeneous ocean %s—investigatedrboth analytically and numerically. .The

b effects of reflections and focusing are not considered. From simplified

= versions of the lossless hydrodynamics equations the theories of linear and

h nonlinear geometrical acoustics are developed. Losses are accounted for

N directly in the numerical routine. The eikonal equation, from which an equation
ﬁ for the ray paths is derived, is assumed to be the same for both small-signal
W

ot DD , %%, 1473  eoimion oF 1 NOV 63 1S OBSOLETE u N c LAS s IFIED

P gb g 8 0023 A SECURITY CLASHIFICATION OF THIS PAGE(Whon Dete Entered)

2]

<+

W T , 3 O I T P T VL L R S A RN A S ST RIS ST RIS
RSO S !,‘,"&'f»f“‘s’o.vnn:ka'ﬂe N T R R R 15 BTN, bty Ty Sy G




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entored)

1
éﬁa 20. (cont'd)
ek and finite amplitude waves. The transport equation is found to be different,
i however. The transport equation leads to a standard first-order progressive
%ﬁ wave equation, linear for small-signals waves, but nonlinear for finite
K amplitude waves. A1l the analysis is carried out in the time domain and is

3
f! ;1. for a fully inhomogeneous ocean.
R il
i - n the numerical study the ocean is assumed to be stratified. The effects of
;. inhomogeneity, ordinary attenuation and dispersion, and nonlinear propagation
N are investigated using a numerical implementation of nonlinear geometrical
%%; acoustics. Two explosion waveforms are considered: a weak shock with an
l%’i exponentially decaying tail and a more realistic waveform that includes the
%@3 first bubble pulse. Numerical propagation of the simpler wave along a 58.1 km
a0 path starting at a depth of 300 m leads to the following conclusions: (1) The

efgsgp of inhomogeneity on nonlinear distortion is small. (2) Dispersion plays

;5' an#’’ important role in determining the arrival time of the pulse. (3) Neither
3«. nonlinearity nor ordinary attenuation (and dispersion) are paramount; both
Yy j need to be included. For the more realistic wave.the>propagation is along a
Ik 23 km ray path starting from a depth of 4300 m. Two charge weights, 0.818 kg
KR and 22.7 kg TNT, are assumed. In each case the energy spectrum of the signai
L obtained by considering finite amplitude effects for the entire 23 km path
oy is compared with spectra obtained by neglecting finite amplitude effects
S&. (V) entirely, ¢2) after the first 150 m, and {3¥ after the first 1100 m.
il Finite amplitude effects are found- to be>of small consequence in the case of
o the 0.818 kg TNT explosion for frequencies below 6 kHz at distances beyond
' 1100 m. For the 22.7 kg explosion the corresponding quantities are 4 kHz
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& FOREWORD

N

- This report is adapted from the master's thesis of the same title

;;‘.'3 by Frederick D. Cotaras. Beginning in September 1983 Mr. Cotaras was

;!;E enrolled in the Department of Electrical and Computer Engineering. He

Ei: received his degree in August 1985. During this two-year period he was
on educational leave from Defence Research Establishment Atlantic

;;:' (DREA), Halifax, N. S., Canada, and was supported jointly by DREA and a

Canadian Natural Science and Engineering Research Council Postgraduate
p! Scholarship.

S
1 4
;’ The research was carried out at Applied Research Laboratories and
iv’ was supported in part by the Office of Naval Research (ONR) under
"7 Contracts NOO014-75-C-0867 and N00014-84-K-0574. The Scientific

Officer for ONR was L. E. Hargrove.
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CHAPTER |

INTRODUCTION

The subject of this report is the propagation of intense acoustic
signals through an inhomogeneous ocean. The analysis is conducted both
analytically and numerically. Our approach is to use nonlinear geometrical
acoustics. The self-refraction of acoustic waves is neglected, and the
acoustic field is assumed to consist of outgoing waves only. The effects of
reflections from the ocean bottom and surface and the effects of the
focusing of acoustic rays near caustics are not considered. In our

numerical algorithm we assume a stratified ocean even though the anélgtic

development is for a fully inhomogeneous ocean in which temperature,
salinity, density, and sound speed vary with position. No losses are
considered in the analytic work. In the numerical algorithm, however, the
losses due to viscosity and relaxation are accounted for in an ad hoc
fashion. Our algorithm is designed to propagate signals, which may contain
weak discontinuities, along a ray path using a stepwise time domain
technique and to apply absorption in the frequency domain.

When considering how to approach a problem involving an intense
sound wave, one usually examines the corresponding small-signal problem.




Popular techniques for deaiing with the propagation of small-signal sounds
) include the following: norvial modes, parabolic approximation to the wave
E equation, and geometrical acoustics. Since we are interested in handling
discontinuities, an approach which lends itself to a time domain implemen-
! tation is preferred. Thus geometrical acoustics and the parabolic approxi-
» mation are both good avenues for dealing wih intense sounds. As noted

” above, we have chosen to use geometrical acoustics. The alternative

.Z; approach, the parabolic approximation, is being explored by McDonald and

Eﬁ : Kuperman (1984).

5 Our implementation of nonlinear geometrical acoustics is

:.Ez somewhat restricted. Since self-refraction is neglected, the ray paths are

‘::; assumed to be determined solely by the inhomogeneous medium and not

;,.. affected by the amplitude of the signal (Whitham 1956). It turns out that

;' this assumption places a limit of 282 dB//1 yPa on the peak amplitude of

’::; the signal. Reflections and focusing are neglected because neither are fully

_‘ % understood for the case of intense sound waves. Reflections and focusing

:,:‘ are avoided in the numerical work by a careful selection of the acoustic ray

*"' paths. Because the acoustic rays are not permitted to either interact with

f; ocean surface and bottom or to pass through caustics, the propagation

Eg range is limited to a maximum of about 70 km in the deep ocean. |
S:' The primary objective of this work is to investigate the |
7 importance of nonlinear effects at long ranges from an intense acoustic |
%.’ source such as an explosive. Because the amplitude of most underwater

f’ sounds is small, the most commonly used theory in underwater acoustics is

[

v small-signal theory. When dealing with underwater explosions,
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investigators commonly assume that, after propagating a certain distance,
the intense sound is sufficiently diminished that small-signal theory
applies. One of the goals of this thesis is to attempt to quantify this
assumption.

A. Review of Finite Amplitude Effects

An intense, or 7inite amplitude acoustic signal is distinguished
from the better known small, or /nfinitesimal signal by the amplitude of
the field variables such as the pressure or particle velocity. To aid in the
distinction, we introduce the acoustic Mach number M, a nondimensional
number equal to the ratio of the maximum fluid particle velocity to the
small-signal sound speed. In the case of small-signals, M is approximately
zero, infinitesimally small. However, for the finite amplitude signals
considered in this report, M may be as large as 0.06, a small, but /m/te
value.

It is well known that the propagation of a finite amplitude wave
cannot be accurately modeled by a small-signal acoustical theory. The
reason small-signal theory fails is that it does not correctly predict the
propagation speed of the wave. The physical mechanisms that cause the
propagation speed to vary from the small-signal value are (1) the
nonlinearity of the pressure-density relationship of the medium and (2)
convection. Convection occurs when the fluid particles themselves are set
into motion by the passing acoustic wave and contribute their velocity to
the total wave speed. The two phenomena, the nonlinearity of the
pressure-density relationship and convection, are embodied in the

I'. ] \ P L T ey
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coefficient of nonlinearity . These phenomena are present even in the
cases of small signals; they are just not perceivable. As the amplitude of
the signal increases, so does the significance of their effects. To
incorporate these effects into acoustical theory, one must consider the

sf;t nonlinear terms in the hydrodynamics equations. Therefore the theory that
K governs a finite amplitude wave must be a nonlinear theory. Hence the

| words finite amplitude and nonlinear are used interchangeably in this

;‘ report. Similarly the words small-signal and linear are used

l‘: interchangeably since small-signal theories are derived neglecting all

g; terms except linear terms.

:‘:; The problem of propagation of plane finite amplitude waves

;‘:g' through a homogeneous medium has a solution that is well established; see,
& for example, Blackstock (1972). The nonlinear acoustical theory described
‘3' by Blackstock is referred to as weak-shock theory. A shock is a

:33 discontinuity in the field variable. If the shock is small enough to be dealt
! with by a nonlinear theory that is quadratic in the field variable, the shock
;E: is referred to as weak (see, for example, Whitham 1974, p. 37). The highest
E‘: amplitude dealt with in this report corresponds to M = 0.06 or,

o equivalently, a peak pressure level of 2826 dB //1 uPa. According to

?:?g Pestorius and Williams (1974), this level is within the amplitude 1imits of

333; weak-shock theory. Pestorius (1973) developed a computer based version

of the weak-shock solution to plane finite amplitude acoustic propagation.

9 He used the computer program to solve problems involving both finite

‘%

Iff,, amplitude noise and periodic waves. As previously noted, a modified form
o of Pestorius's algorithm is used in this report.

COC TG00 b O OO DO O RN AT T TRIRQ il
v?‘?A‘:";‘?“}h‘tl\"ﬂ)“"‘?ﬁ‘.}’.‘?‘“ 3‘7,, ;:‘v N |‘.-_ }5.‘&%-‘2&'!’;‘, "".-»,"" o P ‘:"'ix ?ﬁ.ﬁf “‘ﬂbﬁhﬁ‘i;‘.“t;’“‘?".i’..‘e“b‘!h‘



. e
FRPIRGNG &y

Tl e

7

19

The extension of finite amplitude plane wave theory to nonplanar
waves is of notable importance to this work (see, for example, Blackstock
1964). Blackstock extended the plane wave solution to the problem of
spherical and cylindrical finite amplitude acoustic waves. His approach
was to use two transformations to reduce the spherical (cylindrical) wave
equation to the form of the finite amplitude plane wave equation. The two
transformations, one for the field variable and the other for the range,
permit the use of the solution of the plane wave problem. The
transformations required to deal with plane waves propagating vertically
in a stratified medium were developed by Cariton and Blackstock (1974).
The idea of reducing a complex problem to a simpler one with a known
solucion is used in this thesis.

B. Review of Linear Geometrical Acoustics

Two separate geometrical acoustic theories, one for infinitesimal
signals and one for finite amplitude signals, exist. The extension of linear
geometrical acoustics to incorporate finite amplitude signals is a
comparatively recent development. The two theories predict different
wave shapes, but the same ray paths. The older of the two, linear
geometrical acoustics, is described in the literature survey that follows.

Several methods for developing linear geometrical acoustics
exist. One approach originates in geometrical, or short-wave, optics as
developed by Hamilton (1832; see Conway and Synge 1931). The central
equation in the geometrical technique for both acoustics and optics is the
so called eikonal equation. The eikonal equation defines the ray paths (see,

AACEOAAO0NNCD: DRS00 e by Pl " 0 J OO AINe AT AT
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for example, Born and Wolf 1980, p. 112). The word eikonal comes fom the

) Greek word e/kon, for image, and was introduced into physics by Bruns
(1895) (see, for example, Sommerfeld 1949, p. 207). Bruns developed a
function similar to the one developed by Hamilton and called it the eikonal.
& The eikonal is a function of the spatial coordinate system and defines "a

o o system of surfaces the orthogonal trajectories of which are rays”

| (Sommerfeld 1949, p. 337). Sommerfeld and Runge (1311) were the first to
derive the eikonal equation from the scalar wave equation. Their derivation
clearly shows that ray theory is exact only in the case of infinite

8 frequency. Ray theory is, however, a valid approximation to surprisingly

“;i' low frequencies. It turns out that the approximation depends on the degree
R of inhomogeneity in the medium.

;e,. Sommerfeld (1949, p. 210) provides some interesting comments

3:: about the eikonal and linear geometrical techniques in general. He states
EE that the eikonal equation is a specialization of Hamilton's equation of

y ' dynamics. He notes that Hamilton worked on optical problems, then went on
W to apply his knowledge to dynamics. Hamilton's work in dynamics is

i embodied in the Hamilton-Jacobi equation, and analogies between the
eikonal and the action of the material particle are often made. Goldstein
(1950, p. 312) states fhat the Hamilton-Jacobi equation “tells us that
classical mechanics corresponds to the geometrical optics limit of a wave

o o e @
LIRS i ]

B

motion.” Consequently geometrical acoustics is sometimes derived via the
Hamilton-Jacobi equation (see, for example, Landau and Lifshitz 1959,
p. 257). Sommerfeld observes that the WKB (Wentzel- Kramers- Brillouin)
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approximation of the wave equation corresponds to a transition from wave
optics (wave acoustics) to geometrical optics (geometrical acoustics).

Another way to develop linear ray theory is to use Huygens'
principle and Snell's law. The first application (within acoustics) of this
approach was to analyze the problem of propagation in a moving,
inhomogeneous atmosphere (see, for example, Stuff 1979). The following is
a brief summary of some derivations and applications of linear geometrical
acoustics developed in this fashion.

Rayleigh (1896,S 289) examined the problem of acoustic
propagation in a windy atmosphere. However he did not acknowledge the
difference between the direction of the acoustic ray path and that of the
normal to the wave (eikonal) surface. This flaw has been commented on by
several authors (Barton 1901; Kornhauser 1953; Lighthill 1965; Thompson
1972, Ugincious 1972 ). Several other researchers made use of linear ray
theory to study propagation of airborne sound. An early application is given
by Fujiwhara (1912; 1916). He derived three-dimensional acoustic ray
theory and applied it to the problem of sounds produced by the volcano
Asama in central Japan. Another interesting early work is that of Milne
(1921). His work is an outgrowth of research done during the First World
war on the acoustic detection of aircraft. Rothwell (1947) applied acoustic
ray theory to the problem of meteorological investigations by acoustical
techniques. It is interesting to note that Rothwell's data is from
experiments performed in 1930 and 1931 in which 16 1b practice shells
were fired from an anti-aircraft gun. The data were originally applied to
the problem of acoustical detection of aircraft.

*
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Because of the need to detect submarines, research on linear
geometrical acoustics underwent a resurgence during the Second world
Wwar. inthe years immediately following the war, much of this research
was published. In a major work Blokhintzev (1946a; 1946b) derived the
eikonal equation for a moving, inhomogeneous medium. Earlier researchers
had assumed that the acoustic energy is constant along the ray path.
Blokhinstzev found that a certain combination of the acoustic pressure, ray
tube area, sound speed, particle velocity, and density (not necessarily the
energy) stays constant along the ray path. From his work the term
Blokhintzey invariant arose. Frank, Bergmann, and Yaspen (1969) discussed
the derivation of ray theory and gave a good account of the frequency limits
of the theory. Bergmann (1946) discussed the importance of the density
variation and the gravity terms in the derivation of ray theory.

Over the years since the end of the Second World War, several
other derivations of linear ray theory have been given. Using tensor
calculus and a general curvilinear coordinate system, Haselgrove (1954)
derived ray theory via reciprocal surfaces. He applied his theory to radio
wave propagation, specifically to the calculation of ionospheric ray paths, a
requirement for determining the maximum usable frequencies for
short-wave radio transmission. Haselgrove appears to have been the first
to use an electronic computer (EDSAC, Cambridge University Mathematical
Library) to calculate ray paths.

More recent derivations of ray theory include those of Eby and
Mal'tsev. Eby (1967) derived three-dimensional ray tracing using a Frenet
formulation. In another paper (Eby 1970) he examined the ray paths as
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temporal geodesics. Mal'tsev (1983) derived equations in barycentric
coordinates, a technique that simplifies the calculation of the ray paths.

C. Geometrical Acoustics for Finite Amplitude Signals

Until now the discussion has centered on the problem of deriving
ray theory for small-signal waves. We now address the problem of
geometrical acoustics for finite amplitude signals. Heller (1953) derived
the equation for the ray path of an acoustic discontinuity propagating in a
moving, inhomogeneous medium. He referred to this equation as a
“generalized eikonal equation™ and showed that weak shocks move along the
same ray paths as small-signal acoustic waves. Kornhauser (1953) showed
that Heller's generalized eikonal equation could be obtained by a simple
extension of the small-signal eikonal equation. Keller (1954) was the first
to discuss the variation of the shock strength along the ray path. Keller
solved the problem by examining the jump of the field variables across the
surface of discontinuity (see, for example, Jeffrey and Taniuti 1964). This
approach is not common in acoustics today. Whitham (1956), in a major
work on the propagation of weak shocks, described extensions of linear
geometrical acoustics to encompass weak shocks. His development is very
closely related to the nonlinear geometrical acoustical theory developed in
this report. wWhitham assumed, as we do, that the self-refraction of the
acoustic ray paths is insignificant. Thus he used the ray paths from linear
ray theory and went on to develop a set of improved relations to predict the
shock strength. In a discussion on the inadequacies of linear geometrical
acoustics, whitham said, "It should be stressed that this inaccuracy is a
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failure of the linear theory of sound and is not introduced by the
approximations of geometrical acoustics.”

Also using a geometrical technique, Gubkin (1958) addressed the
problem of propagation of acoustic discontinuities in an inhomogeneods
medium. The solution was presented in a way more familiar to researchers
in acoustics, that is, by starting with the hydrodynamical equations and
making simplifying assumptions based on the degree of smaliness of the
terms in the equations. Using similar notation, Ostrovsky (1963) examined
linear geometrical acoustics in nonstationary media. He then extended the
theory to include finite amplitude waves and applied the theory to the
problem of a sinusoidal finite amplitude wave in a steadily moving gas.
Ostrovsky introduced a parameter "g" which indicates the influence of
medium inhomogeneity upon the shock formation distance.

In the late 1960's, there was a large interest in the propagation of
finite amplitude acoustic waves in an inhomogeneous moving atmosphere.
The stimulation was the problem of sonic booms from supersonic
transports (SST). Hayes, Haefeli, and Kulsrud (1969) developed a computer
program that uses small-signal acoustic ray theory, and then modifies the
result to account for finite amplitude effects. Seebass (1969) presented
the derivation of the equation for the acoustic pressure behind a
propagating weak shock. The equation was obtained by correcting small-
signal ray theory results for nonlinear effects. Seebass's resuit shows
how the acoustic pressure depends on the acoustic ray tube area in the case
of finite amplitude waves.
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In the mid-1970's, interest in finite amplitude propagation in
stationary inhomogeneous media reappeared. Cariton and Blackstock (1974)
analyzed the problem of vertical propagation of finite amplitude plane
waves in a horizontally stratified ocean. The transform technique that
Cariton and Biackstock used is similar to that used by Blackstock (1964) for
nonplanar waves in a homogeneous medium. In 3 comment in the abstract,
Carlton and Blackstock (1974) state that their results were intended to be
incorporated in a ray theory for finite amplitude acoustic waves in the
inhomogeneous ocean.

Before Carlton and Blackstock had an opportunity to perform this
extension, however, the results of a parallel development were disclosed.
Ostrovsky, Pelinovsky, and Fridman (1975; 1976) described the solution of
the problem of propagation of finite amplitude waves in a stationary,
inhomogeneous medium. Their work is central to the discussion of
nonlinear geometrical acoustics (NGA) in this report.

Nonlinear geometrical techiques have been used in many
investigations. Ostrovsky (1976) discussed applications of nonlinear
geometrical techniques to problems such as acoustic propagation in
nonstationary media and the heating of the sun chroraosphere. Pelinovsky,
Petukhov, and Fridman (1979) extended NGA to include the effects of ocean
salinity. NGA was also expanded to encompass the effects of small
dissipation and dispersion (Pelinovsky and Fridman 1983). Warshaw (1980)

"
:;;s:: extended the results of Blokhintzev (19463, 1946b) to account for the
kf"‘
‘i'ﬁ:i cumulative effects of the dissipative and second-order convective terms.

More recently the work of Pelinovsky, Petukhov, and Fridman (1979) was
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. examined by Morfey (1984a). Morfey introduced a parameter “G" to describe
E the effect of the inhomogeneity on the shock formation distance. He

r calculated the parameter for a variety of oceanic environments and

g concluded that the effect of inhomogeneity upon finite amplitude

‘: . propagation is small. Morfey's work is used in this report.

D. Scope of the Investigation

This report is divided as follows: In Chapter 2 we establish the
criteria for simplifying the equations of hydrodynamics. The equations are
then simplified for the cases of small signals in homogeneous fluids, small
signals in inhomogeneous fluids, and finite amplitude signals in

“ -
* ‘4.*0."’~.de .

oy

, inhomogeneous fluids. In Chapter 3 we discuss linear geometrical

. acoustics and derive the elkonal and transport equations. At the same time

" we introduce some of the techiques required for the case in which the

5 signals are of finite amplitude. Nonlinear geometrical acoustics is

-;» presented in Chapter 4. The notation used varies slightly from that of

,. Pelinovsky et al. (1979) and adheres more closely to that of Blackstock ]
f (1964). In Chapter S we discuss the numerical implementation of the

4 findings of Chapter 4. The method of handling shocks in the waveform and ;
- the transformation to the frequency domain to correct for absorption is

due to Pestorius (1973). The computer based ray model used is due to

; Foreman (1983) Some of the results of the testing of the numerical l
K algorithm are presented. In Chapter 6 the numerical algorithm fs used to :
4 study the effects of viscosity, relaxation, and dispersion on the propagation

;;5 of waves through the ocean. It is also used to provide examples of the
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effects of ocean inhomogeneity on finite amplitude propagation. The
o0 waveforms considered are a weak shock with an exponentially decaying tail
" ‘ and Morfey's (1985) modified form of the Wakeley explosion waveform
(Wakeley 1977).
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; CHAPTER 2 ;
" t
}: | RANKING OF TERMS i
r 3
. 2
A Introduction !
§ In this chapter a method for simplifying the equations of ”
f hydrodynamics is discussed. An equation of state for seawater and the ;
‘:E hydrodynamics equations, including loss terms, are presented. As §
E mentioned in Chapter 1, it is our intention to neglect all losses during the
. analytic development, and then account for viscosity and relaxation by a ¢
¢ special procedure in the numerical propagation routine. The viscosity and b
: heat conduction terms have, however, been included in the hydrodynamics d
; equations so that the ranking system can be fully demonstrated. Basic
¢ assumptions about (1) the amplitude of the signal, (2) the magnitude of the \
loss coefficients, and (3) the type and degree of inhomogeneity of the ]
‘ medium are made. The terms in the equations are then ranked according to t
§ their relative importance. Use of the ranking system enables simplified f;
forms of the hydrodynamics equations to be readily obtained (Lighthill v
: 1956; Cariton and Blackstock 1974), :
N For an inhomogeneous, thermally conducting, viscous fluid, an

equation of state and the hydrodynamics equations are as follows (see, for

o
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example, Panton 1984; the momentum equation is from Hunt 1955):

g State P=P(EX,p) , (A1)
Continuity /3t + V-pu=0 , (A2)
:ﬁ‘:g Momentum pau/at + p(u-Vu = -VP + pg + (A+24)V(V-u)

it - LVX(VXU) + (V-u)VA

RN + 2(Vp-Vu + Vux(vxu) |, (A.3)
i

ﬁ::: Energy poe/at + p(u-V)e = -P(V-u) + LYY + V-(XVT) , (A4
s

%‘é‘!’ where P is the pressure, E is the salinity, X is the entropy, p is the density,
?"g‘. t is the time, u is the particle velocity, g is gravity, A and y are,

ak respectively, the dilatational and shear viscosity coefficients, e is the

g: internal energy, X is the viscous stress tensor, X is the coefficient of

zgg thermal conductivity, and T is the temperature. Since the emphasis of this
; work is on acoustic propagation in the ocean, the salinity of the ocean is
:v.-‘,; included in the equation of state. Note also that our coordinate system has
:;gti gravity acting in the positive z direction; that is, z is positive downward.

We expand the continuity and momentum equations. First we

1

express the density as the sum of a static value p, and a small fluctuation
p', and the pressure as the sum of a static value P, and a small fluctuation

;N’“&,.:‘,

3 o
‘; g P=pyte (AS)
¢
!f% ; P= po + P' . (A'6)
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In a static fluid the pressure and density fluctuations are zero. In this
case, the continuity equation, Eq. (A.2), is identically satisfied while the
momentum equation, Eq. (A.3), reduces to

VP =0, - (A7)

If Egs. (A.5) and (A.6) are substituted into the continuity and momentum
equations, and Eq. (A.7) is used to reduce terms in the latter, the following
equations are obtained:

Continuity ~ 2p'/at + p V-u = -u-Vp, - u-Vp' - p'Vu (A.8)

Momentum  pgou/at + VP' = (p'/po)VP, - p'au/at - pylurVu - p'(u-Vu
+ (N20)V(V-u) - uVx(Vxu)
+ (V-U)VA + 2(Vp-Vu + Vux(Vxu)
+(VU)V(A+ 2p) . (A9)

To simplify Eqs. (A.8) and (A.9), we must have some knowledge of the
relative importance of each of the terms.

We now state our basic assumptions: The magnitude of the
particle velocity, lul, is assumed to be small with respect to the sound
speed c,, but not necessarily infinitesimal. It turns out that this
assumption implies that the pressure fluctuation P' is small with respect
t0 poCo? and that the fluctuation p' is small with respect to p,. The above
assumption is expressed mathematically as follows:
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o ul «cqy , (A.10)
;.:E;Q 'l «py (A11)
.§v‘ IP'l « poCo? - (A12)
i

i‘f': As for the inhomogeneity of the medium, it is assumed that environmental
§§': properties of the seawater such as the density, temperature, salinity, and
‘32:;‘; sound speed vary with position. As can be seen from Eq. (A.7), the static

::':g: pressure is assumed to vary only with depth. We assume that the ocean is
5333' only mildly inhomogeneous; that is, the environmental properties vary

e slowly on a wavelength scale. Consequently the derivative of an

l::'g-: environmental property, for example Vp,, is small; that is,

&

3;;::'! NVl €0 (A13)
o where A is the wavelength. Losses due to heat conduction and the diffusion
;:?: of dissolved salts are assumed to be zero; however, losses due to viscosity
) and relaxation are assumed to be small, but not zero.

Ei:t: Before stating the ranking system, we define some nomenclature.
33;-:-: A linear term with a coefficient containing a first derivative of an

e environmental parameter is referred to as an inhomogeneity term,;

:? examples are u-Vp, or VP,(p'/py). Linear terms with coefficients
containing a constant loss coefficient, such as (A + 2uXV-u), are referred
X ' to as dissipation terms. Similarly terms containing a quadratic nonlinear
s:"'é: term with a coefficient that contains neither a derivative of an

%. environmental property of the fluid nor a loss coefficient are referred to
R

i
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i

',{‘,5 as nonlinearity terms; examples are p,(u-V)u and p'(V-u). Nonlinearity

}:',':i terms are associated with finite-amplitude behavior.

’:::e Use of the assumptions stated above enables the various terms in
o the hydrodynamics equations to be ranked by degree of smallness as

.::3::3 first-order terms, second-order terms, and higher-order terms. A

~'§5 first-order term is defined as a linear term with a coefficient that

. involves neither derivatives of environmental properties of the fluid nor a
zi loss coefficient. Examples of first-order terms are po(V-u) and p,du/at.
:z:' Second-order terms represent only the most important effects of

} . nontinearity, inhomogeneity, and losses. Accordingly inhomogeneity terms,
g{ noniinearity terms, and dissipation terms are classified as second-order
' terms. Since the effects of nonlinearity, inhomogeneity, and losses were
0 assumed small, any term representing the interaction of any two effects
fZ}\" would be expected to be negligible. Such terms are encompassed in the

ZE% third major category, higher-order terms. Examples of higher-order terms
~'f are cubic terms such as p'(u-V)u and nonlinear inhomogeneity terms such
I'\i' as Vpo(u-V)u. Linear terms with coefficients that contain higher-order

derivatives of environmental properties, or that are nonlinear in the first
derivative of an environmental property are also higher-order terms;

8 examples are (Vp,VP,)p’ and p' V2P,

ﬁ: Use of the ranking system makes it relatively easy to deal with
:5.4 special cases such as small-signal waves in a lossless inhomogeneous fluid
':':E:.z and finite amplitude (but not strong) waves in dissipative homogeneous

o fluid. The hydrodynamics equations can be simplified and, in most cases,
E,;: combined to form the wave equation corresponding to the situation at hand.
¢

i
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B. Simplifying the Lossless Hydrodynamics Equations

ris'.'s: The analysis from this point on deals solely with lossless fluids.
Tﬁtzy&‘ The effects of the dissipation terms are considered in the numerical

\ propagation routine discussed in Chapter 5. In this section the

i:§*<§. hydrodynamics equations are simplified to find (1) linear equations for a
Edﬁu homogeneous fluid, (2) linear equations for an inhomogeneous fluid, and
(3) nonlinear equations for an inhomogeneous fluid. Since all three sets of
equations are for lossless fluids, the loss terms can be dropped from the
:',.-;.;:n expanded momentum equation, Eq. (A.9), and from the energy equation,

{» Eq. (A4). The state and hydrodynamics equations are then as summarized
below:

Mt State P=PEX,p |, (A1)
o Continuity 3p'/3t + p(V-u) = -u-Vp, - u-Vp' - p'(V-u) , (A.8)
ki Momentum  p,du/at + VP' = (p'/p,)VP, - p'au/at - p(u-Vu ,  (B.1)
e, Energy DX/Dt=0 |, (8.2)

where D(-)/Dt is the material derivative and is defined as follows:

e DC)/Dt = a()/at + (U-V)() . (8.3)

. A physical interpretation of the energy equation for an inhomogeneous
1:35?'\{ fluid, Eq. (B.2), is that the entropy of any given fluid particle remains
Al constant (see, for example, Pierce 1981, p.12). In the case of a
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homogeneous fluid, the energy equation would be a little simpler. It would
be interpreted as meaning that the entropy is the same for all fluid
particles.

Since there are five variables and only four equations, we need
another equation. We can get it from our earlier assumption that the losses
due to the diffusion of dissolved salts are zero. This assumption is
equivalent to saying that the change in salinity of any one fluid particle is
zero (Landau and Lifshitz 1959, sec. 57),

DE/Dt=0 . (8.4)

1. Linear Hydrodynamics Equations for Lossless Homogeneous
Eluids
Retention of only first-order terms simplifies the hydrodynamics
equations into a set of linear equations for homogeneous fluids. Since all
the terms on the right-hand side of Egs. (A.8) and (B.1) are second-order
terms, they must be dropped. This leads to the following:

Linear Continuity '/t +p,Vu=0 , (B.5)

Linear Momentum Pdu/dt + VP' =0 . (B.6)

Turning our attention to the equation of state, Eq. (A.1), we see that by using
a Taylor series expansion and retaining terms up to first order, the
following equation can be obtained:
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P=Py+(p-0p {g—g} - (8.7)
X£o- [
The small-signal sound speed is defined as follows:
2= {a—p} : (8.8)
o0
xEp= Po

Substituting Eq. (B.8) into the equation of state, Eq. (B.7), and using the
expressions for the density and pressure given in Egs. (A.S) and (A.6), we
arrive at the following:

P'=c,2p" . (B.9)

Equations (B.S), (B.6), and (B.9) are the linearized continuity, momentum,
and state equations for a 10ssless homogeneous ocean.

2. Linear Hydrodynamics Equations for Lossless Inhomogeneous

Eluids

Retention of first-order terms and inhomogeneity terms
simplifies the hydrodynamics equations into a set of linear equations for
inhomogeneous fluids. The continuity equation is obtained from Eq. (A.8) by
dropping the nonlinear terms, the last two terms on the right-hand side.
Similarly, the momentum equation is obtained from Eq. (B.1):

Continuity 3p'/3t + g, VU + UV =0 (B.10)

Momentum Podu/dt « VP' - (p'/p,)VP, =0 . (B.11)
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The equation of state is obtained by taking the material derivative of
Eq.(A 1),

Dt "Dt 13p),, .. v * Dt Jax NN C3

IT Egs. (B.2) and (B.4) are substituted into Eq. (B.12), the second and third
terms cf Eq. (B.12) drop out. Expansion using the definition of the
smali-signal sound speed, Eq. (B.8), ylelds

State P'/at + wVP, =c,2(ap'/at + wVp,) . (B.13)

Thus the linear equations of continuity, momentum, and state for a lossless,
inhomogeneous fluid are Egs. (B.10), (B.11}, and (B.13).

3. Nonlinear Hydrodynamics Equations for Lossless inhomogeneous

Fluids

Retention of first-order terms as well as inhomogeneity and
nonlinearity terms simplifies the hydrodynamics equations into a set of
nonlinear equations for inhomogeneous fluids. The nonlinear equations of
continuity and momentum for a lossless inhomogeneous fluid are Egs. (A.8)
and (B.1); no terms need to be dropped. The equation of state is more
complicated than it was in the previous two cases. Retaining terms up to
second-order in the Taylor series expansion of Eq. (A.1), we obtain
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+(z-to){§§} +(x-xo){§%} . (B14)
9.X.§ = Eo P-ﬁ.x = xo

where it has been assumed that variations in the salinity and entropy are of
second-order in smallness. Using the definition of the small-signal sound
speed, Eq. (B.8), and the expressions for the density and pressure given in
Egs. (A5) and (A.6), we see that Eq. (B.14) becomes

2
.1 2(2%P 2P
P=cgo'+ 50 {——} +(E-E ){—}
27 lop? xronog ST
‘X - xo){:—';} (B.15)
pEX =X,

The nonlinear continuity, momentum, and state equations for a lossless
inhomogeneous fluid are Egs. (A.8), (B.1), and (B.15).

C. Substitution into Second-Order Terms Using First-Order Relations

Once a simplified form of the hydrodynamics equations has been
obtained, the same level of approximation must be maintained consistently
throughout any subsequent analysis. In the course of such analysis, it is
often necessary for the dependent variable in a term to be replaced with an
equivalent expression. It is therefore useful to note that the dependent

variables in second-order terms may be replaced using first-order
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relations without decreasing the overall level of the approximation. For
example, suppose we decided to recast the p'du/at term in Eq. (B.1). By
using Eq. (B.6) we could substitute VP'/p, for au/at; thus an equivalent
second-order expression, (P'/p,) VP', is formed. If we had substituted
using an expression from Eq. (B.11), however, a higher-order term,
p'2VPo/po, would be introduced. This term would have to be dropped in
order to maintain the same level of approximation. This extra step is
avoided by using the following rule: When substituting for the dependent
variable in a second-order term, use a first-order relation (see, for
example, Lighthill 1956).

D. Enilogue

In this chapter a ranking system was defined, and then used to
simplify the lossless hydrodynamics equations into specialized forms.
These forms can be readily combined into (1) the small-signal wave
equation for homogeneous fluids, (2) the small-signal wave equation for
inhomogeneous fluids, and (3) the nonlinear wave equation for

inhomogeneous fluids.
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CHAPTER 3

LINEAR GEOMETRICAL ACOUSTICS

A. Introduction
In this chapter linear geometrical acoustics, commonly referred

to as ray theory, Is discussed, and the mathematical techniques required
for nonlinear geometrical acoustics are introduced. The linear
hydrodynamics equations for a lossless inhomogeneous medium are
combined to form the corresponding wave equation. A Galilean
transformation in which the speed of the moving coordinate system is the
small-signal sound speed ¢, is introduced. At the same time we introduce
what is called the geometrical acoustics assumption. Use of the Galilean
transformation and geometrical acoustics assumption enables us to
separate the wave equation into two equations: the transport equation and
the elkonal equation. The development is performed solely in the time
domain. The gradient of the eikonal {s related to the variation of the sound

speed in the medium. For the case of a stratified ocean, we reduce the

elkonal equation to an expression for the radius of curvature of the ray '

N .’
t: path. The transport equation is then reduced, via two transformations, to
ks the form of the first-order plane wave equation for a homogeneous fluid. i'
¥, W |
8
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The analysis starts with the linear hydrodynamics equations
which include inhomogeneity terms. By the end of the derivation, however,

o o i e

all the inhomogeneity terms have been neglected. The inhomogeneity of the
medium thus enters the wave equation solely through the dependence of the

Ry LT T

sound speed on position. Hence the results of this chapter are, within the

e
o

ranking scheme of Chapter 2, valid to a first-order approximation.

; B. Linear Lossless Wave Equation for Inhomogeneous Fluids

In this section the linear l1ossless hydrodynamics equations for an
inhomogeneous fluid are combined to form a wave equation. First the
» continuity and state equations, Egs. (2-B.10) and (2-B.13), are combined to
eliminate the dp'/at' and u-Vp, terms. The time derivative of the result is
%P 2y

ob 2¢g .M .
2 "ot VRt BciV 0 (B.1)

ot

e -’

X

Use of the momentum equation, Eq. (2-B.11), eliminates the factor au/at
term in Eq. (B.1). The result may be arranged in a convenient form

' g -

(] (] 2 t
1 2% Yoy VP 9B, (VP'- GV

2 L]

R T

o'|vP, o|2 0 o2, _ 20
= ——a—+—=VP,-—Vp, VP, - (8.2)
0ic2 o O B Po" V¥
Since the three terms on the right-hand side of Eq. (B.2) are higher-order
terms, they must be discarded in order to maintain the same level of
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B approximation. The fourth term on the left-hand side of Eq. (B.2) appears to
g be of second-order of smallness, an inhomogeneity term. Recalling the rule
% mentioned in Chapter 2, we may employ a first-order relation to substitute
;:‘_ for the dependent variable P'. The appropiate first-order relation is the
Q\ linear state equation for a homogeneous fluid, Eq. (2-B.9). Its use shows
that the fourth term is actually of higher order and must therefore be

. dropped. The effect of discarding the fourth term is tantamount to having
na derived the wave equation disregarding the gravity term in the momentum
‘ equation, Eq. (2-A.3) (Bergmann 1946). By a more physical discusston,

; Bergmann concluded that the gravity term may be neglected in all but a few
s z extreme situations, such as the propagation of very low frequency signals.
If all of the terms mentioned above are removed, Eq. (B.2) may be
" written as follows:

s 2, 1 2°p Voy VP

b vep' - o? e (8.3)
:ii'

;Z.;' The first and second terms of Eq. (B.3) constitute the classical wave

‘.:' equation.

& The third term is present because of the inhomogeneity of the fluid;
:EE this term was also discussed by Bergmann (1946). He concluded that it may
' be neglected if the density gradient is sufficiently small, or if the 1
frequency of the signal is sufficiently high. (This may be shown by |
:5 considering an example situation similar to that used below in Section E.)

K, In fact Brekhovskikh and Lysanov (1982) state that the density gradient

%
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e term may be neglected for frequencies as low as | Hz. If the density

;E’; gradient term is neglected, Eq. (B.3) becomes ;
i 200 1 2%P |
gf;‘: vep - az)at_z =0 (B.4)

" which has the form of the ciassical wave equation. Thus to a first-order
approximation, all the effects of the fluid inhomogeneity enter through the

’f' variation of the smali-signal sound speed C,.

ot

.

i C. Geometrical Acoustics Assumption

zj The assumption that we are about to make Is referred to as the
#

geometrical acoustics assumption (see, for example, Landau and Lifshitz
1959, p. 256). The assumptions made up until now can be seen cleariy with
the aid of the ranking scheme; only first-order terms and second-order
inhomogeneity terms have been retained, and the latter have been found

; b insignificant. For geometrical acoustics another assumption Is needed. We
LR assume that the surface defined by an arbitrary wavefront is made up of

i many small segments of area, each of which may be regarded as plane. This
4 Is a reasonable assumption, since we are concerned with long range

propagation. At long ranges the curvature of a spreading wave is very
small. The signal associated with each small segment of area follows a
‘i path that Is perpendicular to that segment. The path iIs called a ray; see
. Fig. 3.1. within the geometrical acoustic assumption the travel time

'

" assoclated with propagation along each ray iIs defined as the integral of the
;‘4 reciprocal of the local sound speed along the ray path. All of the small
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plane surface elements that make up the wavefront are assumed to have the
same phase (travel time), and hence the expression equiphase wavelronts.
A small bundle of rays may be thought of as forming a tube. Since within
the geometrical acoustics assumption no propagation takes place across
rays, a propagating disturbance is bounded by the walls of its ray tube.

The geometrical acoustics assumption has, of course, a range of
validity (see, for example, Frank, Bergmann, and Yaspan 1969, p. 63). When a
ray turns appreciably over the distance of a wavelength, the equiphase
wavefront assumption breaks down and diffraction has a strong effect on
the propagation (signals do not remain confined to their ray tubes). It turns
out that, for a ray to turn appreciably, the sound speed must vary rapidly
over a wavelength. Hence, for geometrical acoustics to be a valid
assumption, the sound speed must vary slowly on a wavelength scale.

Before imposing the geometrical acoustics assumption, we need to
introduce the concept of retarded time. Consider a Galilean transformation
in which the speed of the moving coordinate system is the small-signal
sound speed C,. In this system the new time t' is termed retarded time.

For a plane wave, retarded time is defined as follows:

t=t-xc, , (C.1)

where x is the distance the wave is propagated. Note that x/c, is the travel
time for all points on the wavefront; thus plane waves are equiphase
wavefronts. For a spherical wave retarded time is

t'=t-(r-rglc, , (C.2)
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g: where r is the radial range and r,, is the reference range. In this case the
2 travel time is (r-rg)/c, Note that geometrical acoustics is exact in the
case of plane and spherical waves.

Ly The use of retarded time as a new independent variable greatly
1‘-: simplifies wave equations. To illustrate this we use the retarded time

o

variable in the first-order plane wave equation for a wave moving

> outwards through a homogeneous fluid. A first-order plane wave equation
} may be formed by separating the commutable derivatives in the classical
wave equation as follows (see, for example, Pierce 1981, p. 20):
!Q{f‘
3 [070t - ¢y asax] o/t + ¢yt a/ax1 P =0 . (€3)
WA
B The first term in square brackets may be thought of as an operator
vy
-?, associated with incoming waves, and the second term, with outgoing waves.
Br
% 3 Integration with respect to one of the operators leads to a first-order
,: wave equation. The integration constant must be zero to satisfy static

S‘é:j conditions. The first-order wave equation for outgoing waves is as
W
:':3:; follows:
W
o '/t + CH AP /ox =0 (Ca
s
, y
Qe Substitution of the outgoing wave function P'(t - x/c,) into Eq. (C.4) shows
s that Eq. (C.4) is the correct wave equation. If new independent variables ¥,
':.Eé t', where t' is given by Eq. (C.1), are introduced, Eq. (C.4) becomes

. P'/x=0 . (C5)
:l‘ :'
o
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M This is a considerable simplification. The physical interpretation of

o ‘ Eq. (C.5) is simple: Since all points on the wave move with the same velocity

as our new coordinate system, the wave appears motionless. Hence the

P¥y derivative of the pressure with respect to x, holding t' constant, is zero.

W The definition of retarded time in an inhomogeneous fluid is
similar to its definition for plane and spherical waves. Because the

-:3: small-signal sound speed may change along the ray path, the travel time is

A now a path integral:

i t'=t-fds/c, , (C6)

\!
§§, _ where ds is an incremental step along the ray path.

- We now state a general definition of retarded time and introduce
il the etkonal ¥(r).

4y tmt-¥r) . ' (C.7)

A Note that the etkonal is a function of the ray path position vector r; it is

e not a function of t'. The eikonal is defined to represent the travel time, or
phase shift, associated with the distance between the origin of the wave
53' and its current position. The integral in Eq. (C.6) plays the same role. It

::}; turns out that in the case of inhomogeneous media, this definition of the

- eikonal is equivalent to imposing the geometrical acoustics assumption.

.;‘ Note that if the eikonal ¥(r) is constant, an equiphase wavefront is defined.
i3 (For this reason, equiphase wavefronts are sometimes referred to as
elkonal wavefronts.) Equiphase wavefronts are part of the geometrical
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acoustics assumption. Thus use of the eikonal in our definition of retarded
time means that the geometrical acoustics assumption is invoked.

The rate of change of the phase of the equiphase wavefront may be
defined, by analogy with Eq. (C.6), as follows:

|V¥|=1/c, . (C.8)

This definition is important to our work in both this chapter and the next.

We now develop the relations necessary to apply the Galilean
transformation based on Eq. (C.7) and thus to introduce the geometrical
acoustics assumption. First the effect of the transformation on the spatial
and temporal derivatives, V and 9/9t, is determined. Careful application of
the chain rule leads to

oP'/at = oP'/0t' (C.9)

VP' - VP' - VY¥oP' /ot , (C.10)

V- - V-u - V¥-ou/ot' (Cat)

vip' - |v~1r|2&; - 22 wewr) - v & v i)
ot ot ot

As is shown below, the terms V¥aP'/at' and VP' tnEq. (C.10) are,
according to the ranking system of Chapter 2, associated with first-order
effects and second-order effects, respectively. It is relatively simple to
show that V¥aP'/at' is assoctated with first-order effects. Recalling
Eq. (C.5) we note that, after making the Galtlean transformation, a linear

S B )

IR
LU ol




] A" ’i"l

48 .

P
Bl B

progressive piane wave appears motionless to the observer. The variation
of the wave occurs solely with respect to the retarded time variable t'.

ML

Hence the derivative of a field variable, such as oP'/at', is a first-order ,*
) term. ‘::
- To show why the spatial variation VP' is associated with 3
33 second-order effects, we again recall Eq. (C.5). In that equation we see that ?
' the spatial variation is zero in the case of a small-signal progressive plane F
E wave. In the moving coordinate system the spatial variation term can have :‘:
: a non-zero value only if a wave changes its shape as it propagates. Three f
; causes of change of shape are the decrease in amplitude due to geometric .
1:: spreading, the effects of inhomogeneity, and finite amplitude effects. We :‘
:'E are interested in propagation to long ranges, well into the farfield; hence )‘
F the change due to geometrical spreading is small. In the ranking scheme of L
r Chapter 2, the terms associated with small effects such as nonlinear §
distortion are ranked as second-order. Accordingly terms containing VP' ‘
are ranked as second-order. Note that we assume that the vector VP' is ;i
:i tangent to the ray path. This is in keeping with the geometrical acoustics :
by assumption wherein the propagation of the signal down each ray tube is \
b treated individually. )
1‘, Because in the r, t' system VP' is a second-order term, the %-
:, first-order equivalent of Eq. (C.10) is
3 VP = -V¥oP' /ot . (€.13)
3, This relation is useful in reducing second-order terms. Recall the
.. substitution rule that was mentioned in Chapter 2. For example, the
;
)
: | 3
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S
Galilean transformation of the second-order quantity Vp,-VP' in Eq. (B.3)

Sy
:;‘ } has several parts, but on application of Eq. (C.13) reduces to
§
3y (V¥-Vpg)oP'/at'

. Equation (C.13) is also useful for maintaining the same order of
:cﬁ"
Sg. "‘ approximation in first-order relations. For example, consider the
l:fé; linearized momentum equation for a homogeneous medium, Eq. (2-B.6). The

. Galilean transformation of it with application of Eq. (C.13) in place of
EE.?::" Eq. (C.10) is as follows:
:";'Eo'
ot pou/at’ = V¥ P /ot (C.14)
L2
s
*\ Because ¥ is not a function of t', we may easily integrate Eq. (C.14) with
Ny
R respect to t'. Note that the integration constant must be zero in order to
R satisfy static conditions. The result is
R\
o u=(P/pIVY . (C.15)
9
}:3‘;2‘;2 This expression may be thought of as a generalization of the progressive
A
‘:;Et"{', plane wave impedance relation, P' = poCou. Equations (C.13) and (C.15) are
ik
vk used In the next chapter to simplify nonlinear terms.

Wwe now apply the Galilean transformation to the smali-signal
wave equation for inhomogeneous media, Eq. (B.4). Using the transforms of

the spatial and temporal derivatives, Egs. (C.9) and (C.12), we obtain the

following:
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2.
(lz -lviflz) Z_t% + ft—.(zw-vwv’wv = v, (C16)
0

In order to assess the relative importance of the term on the
right-hand side of Eq. (C.16), V2p', we need to understand its physical
significance. The Laplacian of the acoustic pressure P' is defined to be the
divergence of the gradient of P'; that is, V2P' = V-VP'. It has already been
argued that, in the moving coordinate system, VP' is related to
second-order effects, the variation of the shape of propagating wave. Hence
V-VP' is the rate of change of the variation. In the case at hand,
small-signal propagation, the variation of the propagating wave is due
solely to geometric spreading. In geometrical acoustics the ray paths are
not permitted to turn appreciably over a wavelength; hence the spreading
takes place gradually. The rate of change of the spreading is therefore
assumed to be zero. In the case of finite amplitude waves, the situation is
not so simple. As already noted the term VP' is assumed to be associated
with the second-order effects of finite amplitude and inhomogeneity; it is
also assumed to be tangent to the ray path. We now assume the distortion
effects occur slowly and without sudden changes. With this assumption the
term V2P’ can be neglected since |VP'| » |V2P'|. Note that in other
situations, such as those in which the rays turn rapidly, the term v2p' is

important since it accounts for diffraction (Pelinovsky, Petukov, and
Fridman 1979).

If the right-hand member is neglected, Eq. (C.16) may be expressed
as follows:

v 4 - oy W - w, W W Ca™ sy (-’."-
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(cg VY| )at,2 raAMAA L) .
et
';E?;EE We now split Eq. (C.17) into two parts. To do this we use Eq. (C.8) which was
%3?,\;3 - obtained from the geometrical acoustics assumption, and which shows that
" the first part of Eq. (C.17) vanishes,
i
S 1/¢2 - [V¥[2=0 . (C.18)
i
i;{' Equation (C.18) is referred to as the eikonal equation. As is shown in the
:éf' ! next section, the eikonal equation dictates the acoustic ray paths. The
?:5:; remainder of £q. (C.17) may be integrated once with respect to the retarded
. time variable t'. Noting that the integration constant must be zero in order
‘Eé to satisfy static conditions, we arrive at the following:
NN
)'" V- (V¥P =0 . (C.19) |
5::& | Equation (C.19) is called the transport equation and is equivalent to
R Eq. (8-5.13) in the book by Pierce (1981). It turns out that this equation
‘ governs the variation of the acoustic pressure along the ray path.
: D. Ray Paths from the Eikonal
3%‘*; In this section it is shown that the eikonal equation, Eq. (C.18),
t} defines the acoustic ray paths. (A ray path and the coordinate system are
?.E: 2 shown in Fig. 3.2.) First the connnection between the etkonal and the ray
s path is found. Next the ray path is linked to the spatial variation of the
N
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sound speed. We then combine the two ideas and find a general relation for
the ray paths in terms of the gradient of the eikonal, the gradient of the
sound speed, and the tangent to the ray path. The general relation is then
simplified for the case of a stratified medium.

A connection between the eikonal and the ray path is sought. The
eikonal defines an equiphase surface; thus V¥ is by definition, normal to
that surface (see, for example, Thomas 1968, Sec. 15.6). Since Eq. (C.18)
gives the square of the magnitude of V¥, it is easily seen that

CVY¥=n , (D.1)

where n is the unit normal to the surface. It is known from vector calculus
that the unit tangent to the ray path T is defined as the derivative of the
ray path position vector r with respect to the ray path lengths,

T=or/0s . (D.2)

Since the ray path is normal to the wavefront, the unit tangent to the ray
path and the unit normal to the wavefront are equal,

T=n . (D.3)

(Note that they are not necessarily equal in the case of a moving medium;

P - —e. -y .
4'_5_',':."_".‘1'_1..;. “. ol

" see, for example, Pierce 1981, p. 371.) Combining Egs. (D.1) and (D.2) ytelds

k)

b the following relation:

; .

VY =or/os . (D.4) g

; 3

) I

: ;

a,
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The gradient of the eikonal is thus closely related to the tangent to the ray
path.

An equation that links the ray path with the variation of the sound
speed in the medium is now sought. From the Frenet-Serret formulas (see,
for example, Sokolnikoff and Redheffer 1958, Sec. 4.11), we know that a ray
path may be thought of as a sequence of arcs of radius R, wherein R varies
as a function of position along the ray path. The following equations are
part of the Frenet-Serret formulas:

KN =0T/2s , (D.5)

R=1/K , (D.6)

where K is the curvature and N is the principal normal. The principa)
normal is defined to be normatl to T and point towards the center of
curvature. From the above relations the radius of curvature R may be
expressed as follows:

R=|aT/as|” . (D.7)

Because of its close relation to the ray path, let us find an
expression for R or, equivalently, an expression for aT/a3s. Use of Eq. (D.2)
yields

dT/3s = dr/as)/ds . (D.8)

Noting Eq. (D.4) and the relation 2/3s = (ar/d3s - V), we see that Eq. (D.8)
becomes

DI ‘ -
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oT/ds = (ar/as - VXc,V¥) . (D.9)

Reapplication of Eq. (D.4) gives

dT/3s = (c, V¥ - V) (c,V¥) . (D.10)

Use of the chain rule and the following relation (see, for example,
Gradshteyn and Ryzhik 1980, Eq. 10.31.3),

(VY- V)VY = 12V(VY- VYY) |
inEq. (D.10) leads to

aT/3s = VH(C,VE¥'VC) + (Z/D V(VEVY) . (D11

Use of the eikonal equation, Eq. (C.T8), and the chain rule inEq. (D.11) yields

dV/2s = C, VY (VY¥-VC,) - (VCy)/c, . (D.12)

Recalling Eq. (D.7) we note that Eq. (D.12) connects the radius of curvature R

to the variation in the sound speed V¢, Since the ray paths are arcs of
radius R, Eq. (D.12) may be thought of as connecting the ray paths with the
variation of the sound speed. Equation (D.12) is equivalent to Eq. (66.6) in
the book by Landau and Lifshitz (1959).

A physical understanding of Eq. (D.12) may be obtained by
considering a simple example. Let the medium be azimuthally symmetric
(thus restricting ourselves to the x,z plane) and stratified, that is, the

sound speed profile does not vary in range. (Recall that k is in the direction

A R o e E i B S s



: 56

of increasing depth.) An expression for the radius of curvature R can be

;E' found by reexamining Eq. (D.12). Under conditions stated above, the terms in
I: Eq. (D.12) may be defined as follows:
E Vo =kh (D.13)
[
a or/as=icos® + ksing (D.14)
:,: where h is the gradient of the sound speed profile ac,/dz, 8 is the acute
K
3:% angle between the ray path and the horizontal (see Fig. 3.2), and i and k are
L unit vectors in the Cartesian system. If Eq. (D.4) is used, Eq. (D.14) may be
2 recast in the following form:
‘=
‘ V¥=1c"cos0 + kcg'sing (D.15)
i
'31 Substituting Eq. (D.13) and (D.15) into (D.12) yields the following:
L

aT/3s= hcy,' cos @ (Isind - kcosh) . (D.16)

Let us interpret Eq. (D.16). From a geometrical consideration of

the equation we see that, if the gradient h is positive, the center of

-

curvature is above the current ray path position. The converse is true

-
-
-

-

2« when h is negative. Thus the acoustic rays bend toward the region of the

&

- slower sound speed. From the reciprocal of the magnitude of Eq. (D.16), we s
f obtain the radius of curvature: :
N

R=cy/(|n]cos @) . (D.17) 0
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The quantity cy/cos 8 inkEq. (D.17) is, according to Snell's law, a constant.
From Eq. (D.17) and Snell's law we see that, if h is constant, the radius of
curvature R must be constant. Therefore rays in a constant gradient
medium are circular arcs. Equation (D.17) appears in a variety of
references (see, for example, Officer 1958, Eq. 2-82).

In summary it has been shown that, from the eikonal equation and
the relations of vector calculus, a general expression for the ray paths may
be found. Moreover, in the case of a constant gradient medium, the ray
paths are circular arcs.

E. Acoustic Pressyre from the Transport Equation

In this section it is shown that the transport equation, Eq. (C.19),
may be placed in the form of the first-order plane wave equation in the
moving coordinate system, Eq. (C.5). It turns out that the transport
equation governs the acoustic pressure at any point along the ray path, and
that the acoustic pressure is related to the area of the ray tube. To show
this we introduce the concept of ray coordinates and use an expression that
is required in our development of nonlinear geometrical acoustics. (The
details of the transformation from Cartesian coordinates to ray
coordinates are included in Appendix A.) The three ray coordinates are the
ray path length s and the initial ray launch angles ¢ and y; see Fig. (3.2).

To reduce the transport equation we need an expression for V2¥.
The following relationship is derived in Appendix A:
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s 2 19 A0 ,
%E: VY = K;a_s(c—o) , (E.1)
4 7’
" where A, is the ray tube area. It is shown below that the dependence of ‘
:% V2¥ on the variation in the sound speed may be neglected. We first ‘»
0 rearrange Eq. (E.1) as follows: ]
5 A Ag\ ¢ c !
‘e:* v2y - c—'o [;ﬁ! 2 (i) - ais(éf;)] : (E2) :,'
g )
; where A,, and Cy, are the ray tube area and the sound speed at the %
'*, reference ray path length (1 meter in this example). Consider vertical h
g propagation in a stratified ocean S000 m deep. Let the sound speed "
‘%"2* increase linearly with depth from 1400 m/s to ¢y, = 1600 m/s; i.e., :‘
:f« Co = 1400 + 0.04 z, where z is the depth. This is a larger variation than is ?
b usually expected in the ocean and may be regarded roughly as an upper :
2‘. bound. In the case of vertical propagation, 3/3s = 3/dz and the ray tube ':
EE areas may be approximated by using spherical spreading. The ratio of the 3
£ ray tube areas Ay/Aq, s 22; hence d(Ag/Ag,)/3z = 2z. |f the propagation "
;‘, path is the full ocean depth, S000 m, the term (Ay,/Ag)d(Ay/Ays)/3s is equal ;‘
::; to 4x 10794, Using the conditions given above, the term (Co./Co)d(Co/Coq)/ S §
k) can be seen to be approximately 3 x 10795, Therefore, even when the ;
;' variation of the sound speed is unusually large, the term
: (Coe/ColA(Co/Coe)/ds is small with respect to (Ag,/Ag)A(Ag/Age)/0s. The _
" variation in the sound speed is therefore neglected in Eq. (E.2), and Eq. (E.1) 3
E reduces to :
: :
:
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V2¥ = (c,A)) ! 0A /05 . (E3)

One other relation is required to reduce the transport equation.
e Starting with the expression a/2s = (ar/3s - V), and recalling Eq. (D.4), we
see that

V- V() = (1/c)a)os . (E4)

Simplification of the transport equatton, EQ. (C.19), Is obtained by
forcing it toward the form of Eq. (C.5). Substitution of Egs. (E.3) and (E.4) in
e the transport equation gives the following:

s oA "0 ES)

.‘.s Equation (E.5) may be expressed as a perfect differential by multiplying
5 both sides by Aj'/2 and rearranging,

R AP'A2)/0s=0 . (E.6)

; A physical interpretation of Eq. (E.6) is that P'A,!/2 is constant along the
3 A ray tube, a result consistent with the assumption that the energy is

; N constant along the tube. The fact that P'Ay1/2 is constant suggests a new
‘ dependent variable, one for which the amplitude is not affected by
geometric spreading. To make the new dependent variable have the same
units as P', it is defined as follows:
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W= (A/A V2P (E7)

If this transformation is used, Eq. (E.6) becomes
IW/3s=0 , (E.8)

which has the desired form of Eg. (C.5)

We now obtain the solution of the problem of propagation of
small-signal waves through an inhomogeneous medium. The analogous
solution for a plane wave in a homogeneous fluid is as follows. Given the
boundary condition

PP=g(t)=qg(t') at x=0 |, (E.9)
the solution is

p'=g(t") (E.10)

where t' is given by Eq. (C.1). For the problem of waves propagating in an
inhomogeneous medium, the boundary condition is

Pl =g(t)=g(t) at s=s, . 1D
X z Although the boundary condition does not have quite the same form as
g Eq. (E.9), the form can be made exactly the same by defining a new
3'1 independent variable. The new variable should not, however, alter the form
KOS of Eq. (E.8). The desired transform is
:
R Z=s-5, . (E.12)
R
‘
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(Note that Z is not the same as z, the depth.) The boundary condition is now

o Pl=g(ty=0ot') at Z=0 , (E13)
g«:: where
t'=t-2/c, . (E.14)

iyl Equation (E.8) now becomes
ow/az=0 . (E.15)

s Equation (E.15) is in the form of Eq. (C.5). Since Eq. (E.13) is equivalent to
s Eq. (E.9), the solution of the problem of propagation in an inhomogeneous
N medium is, by analogy,

(e | w=glt) ' (E.16)

' where Z and W are defined in Egs. (E.12) and (E.7).

Thus the linear transport equation for an inhomogeneous fluid,

) Eq. (C.19), has been transformed into an equation in the form of the

'E. first-order plane wave equation for a homogeneous medium by making two
simple transformations: one on the dependent variable P', Eq. (E.7), and the
other on the independent variable s, EQ. (E.12). The main reason for

A introducing the W and Z transformations is to prepare the reader for

é similar, but more complicated, transforms in Chapter 4.
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CHAPTER 4

NONLINEAR GEOMETRICAL ACOUSTICS

This chapter progresses in a fashion only slightly different from
that of the previous chapter. In Chapter 3 the linear lossless
hydrodynamics equations for an inhomogeneous fluid were combined to form
the corresponding wave equation. Next a Galilean transformation, based on
the use of the retarded time t', and the geometrical acoustics assumption
were introduced. The Galilean transformation was then applied to the wave
equation. In this chapter we start with the nonlinear lossless
hydrodynamics equations. They are not, however, combined to form a
nonlinear wave equation, but instead only partially combined. The Galilean
transformation and the geometrical acoustics assumption are then
introduced. The hydrodynamics equations are transformed and then
combined to form a wave equation in the moving coordinate system. From
this point on, the development parallels that in Chapter 3. After the V2p'
term is dropped, the transformed wave équation is separated into the
eikonal equation and the transport equation. The equations are then
discussed. After simplification the transport equation is reduced to a
first-order (nonlinear) wave equation. This equation has the same form as
the first-order equation for plane waves of finite amplitude in a
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homogeneous medium. The reason we depart from the procedure followed in

Chapter 3 is that it is simpler to do so. It is easier to transform and

E?;.; approximate the hydrodynamics equations and then combine them to obtain a
R wave equation than vice versa.

:t In this chapter the standard geometrical acoustics assumption
;Et::: must be broadened. In particular the acoustic ray paths are assumed to be
& unaffected by the signal; that is, self-refraction does not occur. This

;E:: f assumption means that acoustic ray path equations developed in the

EE:. previous chapter may be used even for signals of finite amplitude.

i:’:i Specifically, the eikonal equation, Eq. (3-C.18), and the equation developed in
,':' Appendix A, Eq. (3-E.3), are still valid.

:& The level of approximation used in this chapter differs from that
g used in the previous chapter. There the only second-order terms that were
:ia. considered were the inhomogeneity terms. In the end even these terms

§:. ' were found to be so small that they were neglected. Within the ranking

'.i: system of Chapter 2, this means that the resuits of the previous chapter
:,E:g' are valid to a first-order approximation only. In this chapter we are

:;‘:3 specifically interested in examining the effects of another type of

it second-order term, nonlinear terms. In order to be consistent in our level
:'EE of approximation, terms due to both inhomogeneity and nontinearity are

;Ei:' included throughout the entire derivation. Thus within the ranking system
Pl of Chapter 2, the results obtained in this chapter are valid to a

: second-order approximation.

.i- As was mentioned in Chapter 1, no new material is presented in
K:"‘ this chapter. The following derivation closely follows that of Pelinovsky,
i
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Petukhov, and Fridman (1979), whose work is in turn related to that of

second-order terms.

qu Ostrovsky, Pelinovsky, and Fridman (1976). Both of the cited papers are,

’ however, terse. So much so in fact that it was decided that the full

“ derivation of nonlinear geometrical acoustics should be presented here.

‘EE That decision in turn led to the inclusion of much background material that
o appears in Chapters 2 and 3.

e A. Combinin Hydro

;12 The lossless nonlinear hydrodynamics equations for an

L inhomogeneous fluid were developed in Chapter 2. To combine the nonlinear
i continuity and momentum equations, Egs. (2-A.8) and (2-B.1), we take the

;:‘ time derivative of continuity equation, the divergence of the momentum

o equation, and substitute the former into the latter via the V-p,ou/at term.
: Placing all nonlinear terms on the right-hand side, we obtain the following
i;’g equation:

. , 3 , ,

‘ g:Tp—V2P'+vaovp°=V- po(u'V)u-g—oVP'—-a-(gt—m - (A1)
;: To arrive at Eq. (A.1), we neglected several third-order terms: terms

; involving the Laplacian of environmental parameters such as V2P° , and

i terms involving the products of gradients of environmental parameters

0 such as Vp, VP, It was also necessary to use the linear momentum

?; equation for a homogeneous fluid, Eq. (2-B.6), to simplify one of the
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The next step is to eliminate p' and u from Eq. (A.1). To develop
some of the relations required to do this, we turn our attention to the
equation of state, Eq. (2-A.1). The second-order Taylor series expansion of
the equation of state is given in EqQ. (2-B.15). We now find the temporal
derivative of Eq. (2-B.15) and the gradient of Eq. (2-A.1):

' 50 , 9p' {bco}
o TCom *20,0 5=
at at at |ap .
- (u- V)g{g—z} - VX {%’:-(-] (A2)
O.X.E = £° p.(.X = XO
VP -c2vp vg{:—g} + VX {g—p} ©(A3)
: PpXE"= §° PpEX®" xo

In arriving at Eq. (A.2), we have made use of the fact that the entropy and
salinity of a material particle remain constant; see Egs. (2-B.2) and (2-B.4).

We have also used the definition of the small-signal sound speed,
Eq. (2-B.8).

To reduce the effort required to combine Egs. (A.1), (A.2), and
(A.3), we make use of the Galilean transformation and geometrical
acoustics assumption, which are discussed at length in the previous

chapter.

B. Geometrical Acoustics Assumption

The Galilean transformation and the geometrical acoustics

AU
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assumption are used in the previous chapter to reduce the linear wave
equation to the eikonal equation and a first-order wave equation that has
the form of Eq. (3-C.5). In this chapter we transform the ingredients of the
wave equation, that is, the nonlinear hydrodynamics equations for
inhomogenenous fluids. The equations are then combined to form a wave
equation in the moving coordinate system.

Before the Galilean transformation is applied to the nonlinear
hydrodynamics equations, it is useful to review the transformation as
applied to the equation for finite amplitude plane waves propagating
through a homogeneous medium. The equation is as follows (see, for
example, Blackstock 1972):.

P+ P, - (B0, C A PP =0 ®.1)

where ! Y subscripts t and x indicate derivatives with respect to time and
distance, respectively, and g is the coefficient of nonlinearity

(see Appendix B). Equation (B.1) is the nontinear extension of Eq. (3-C.4).
introduction of the retarded time variable for plane waves, Eq. (3-C.1),
transforms Eq. (B.1) into the following:

P - (B/ppC) PPy =0 . (B.2)

Equation (B.2) is the equation for outgoing plane waves in the second
approximation. It is the nonlinear extension of Eq. (3-C.5). Equation (B.2)
has been analyzed extensively in the past and its solution, called the
Earnshaw solution, is well known (see, for example, Blackstock 1972). Use
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of the Galilean transformation and the geometrical acoustics assumption
enables the nonlinear hydrodynamics equations to be put into the form of
Eq. (B.2); then the problem of propagation in an inhomogeneous medium will
have been solved.

The Galilean transformation is now applied to Egs. (A.1), (A.2), and
(A3). The new time variable t' is defined by Eq. (3-C.7). Expressions for
various spatial and temporal derivatives are given in Egs. (3-C.9) through
(3-C.12). Since the Galilean transformation is a mathematical coordinate
transformation, it is unaffected by the inclusion of nonlinear terms.
Equation (A.1) becomes

2. 2 1
o 2°P  _AVYE-VP) 24 OP' V¥ VP 3p
oy |Vl w2 T op * VY YL -v2p- o ot

K
--vy- -—[po(u vl gow P (;’t“) (63

To arrive at Eq. (B.3), we have used the first-order expression for the
gradient, Eq. (3-C.13), in nonlinear and inhomogeneity terms. The spatial
and temporal derivatives of the equation of state, Egs. (A.2) and (A.3)
become, respectively,

P , 9p' { } 35
- Cop 2Cop : + (u-VY¥)—=

+ (- V¥ %ix- {si} , (B.4)
P»ﬁ.X - XO
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z 3
¢ .
Equations (B.4) and (B.5) are now rearranged in anticipation of '3
i combining them with Eq. (B.3). First consider Eq. (B.4); take its time (t') E:
‘j' derivative, remembering that V¥ is independent of t'. Use of the linear "é
) 4
g momentum equation in the moving coordinate system, Eq. (3-C.15), the f
a' eikonal equation, Eq. (3-C.18), and the linear equation of state, Eq. (2-B.9), t
EE results in the following equation: B
b i
z’z,_rﬂ__z_a_(.a_v:){aio}
s 12 2 4412 S ' ' !
i 't cgat'd cgot\ At /Lo, . " "
I} . ﬁ:
) ) (p:_al){ﬁ} g
4 ] t by
- | PoCo Ot \ oL /19X pEX =X N
" ' »,.
4 - o+ (P-‘;—f-) {g%} - (B.6) 3
' poco plXIE = £° . \i
: i
N Muitiplication of Eq. (B.5) by V¥(p'/py) places it in a more readily usable h,
' form. The same relations used in arriving at Eq. (B.6), hamely, Egs. (3-C.14), ,E?
- (3-C.18), and (2-B.9) are then used to simplify the resuit. Rearranging and N
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taking the derivative with respect to t' yields
%' V¥ VP, _ Vo, VY P 13 (p-_b_E_') {Q‘_’}
' Py b At pgucgat'\" ot/ )y pe
Lo (B.7)

e
ot | oxf s o

Equations (B.6) and (B.7) may be combined with Eq. (B.3). First
simplify the right-hand side of Eq. (B.3) using the same techniques used to
arrive at Egs. (B.6) and (B.7). Substitution of Egs. (B.6) and (B.7) into the
left-hand side of Eq. (B.3) leads to

-—
PeCo ot

(;12 -lwf) 3?32 o 2 [2ve-vps (vzqr - E%’H)p']
- y2p- ﬁ'_gs@{ (p-;_g) (8.8)
where the coefficent of nonlinearity g is defined as follows:
=1 (8.9)

, % {bco}
c
ol EXp =0,

Equation (B.8) is similar to the linear geometrical acoustics equation,

Eq. (3-C.16). The main difference is that Eq. (B.8) has a nonlinear term on
the right-hand side. Another difference is that the left-hand side contains
an inhomogeneity term, namely, (Vp, V ¥/p,)P". The ancestor of this term
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is the third term in Eq. (3-B.3), there referred to as the density gradient
term. Neglected in Chapter 3 as being unimportant except for exceedingly
low frequencies, the density gradient term is retained here. In this chapter
we are specifically interested in examining finite amplitude effects. In
order to be consistent in our level of approximation, we maintain the
second-order terms due to both inhomogeneity and finite amplitude effects
throughout the entire derivation.

Finally, as in linear geometrical acoustics, we discard V2p'. It
was noted in the previous chapter that this term is associated with the
rate of change of the distortion. Since the distortion is assumed to occur
slowly, the rate of change of distortion must be very small and is therefore
neglected. The final form of the nonlinear geometrical acoustics equation

is as follows:
Vo, V¥
(—-|v~1r|) -+ [w vn+(v2~1r— % )p"
c2 ' Qo
= 2B a |ap )
o at( ) (B.10)

C. Reduction of the Nonlinear Geometrical Acoustics Equation

The techniques used in this section to reduce the nontinear
geometrical acoustics equation are the same as those used in Chapter 3 to
reduce the linear geometrical acoustics equatton. Since we assume that the
geometrical acoustics assumption is valid in the case of finite amplitude
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E" waves, we may use the eikonal equation, Eq. (3-C.18), to eliminate the first

*5;‘ two terms on the left-hand side of Eq. (B.10). The remaining terms

E‘v constitute the transport equation which in this case is nonlinear. The

el procedure used in Chapter 3 to reduce the transport equation to a 1
;:: first-order wave equation is now repeated. In this case the first-order 1
8 wave equation has the form of Eq. (B.2). Noting that V¥ is independent of

t', we integrate the remaining terms in Eq. (B.10) once with respect to t'. ;

-
=3
R
.
)

The integration constant must be zero in order to satisfy static conditions.
The result is |

"i"

Sl
oS

-

Vo, V¥ :
AL AL )|>'=ﬁ-p'3'3 c.n

ey 2VY VP + (Vg -
‘ po

Use of the same equations used to reduce the linear transport equation,

e namely Egs. (3-E.3) and (3-E.4) and the eikonal equation, Eq. (3-C.18), enables
i Eq. (C.1) to be rewritten as follows:

| % __B 3P

— 0.t ps (C.2)

2 ! o
Q:H ﬂ).,p'_l l(ﬁ) - — -
200 oS PoCo ot

oo ' oS 2Ay0s\Cy

The transport equation, Eq. (C.2), would be very similar to the
R finite amplitude plane wave equation, Eq. (B.2), if the middle term could be
o forced to vanish. To force Eq. (C.2) towards the form of Eq. (B.2), we

™ introduce a transformation of the dependent variable:

ii' W = kP' , (C.3)
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where k is a function (not a constant) to be defined in such a way that the
boundary condition at the source transforms conveniently, that is, W = P' at
the source. Use of Eq. (C.3) in Eq. (C.2) yields

c A 0 W
W, o 2(2) 1 %o 1ok|_ _BW W .,
oS 2A, 08\ Cy

Setting the middle term to zero yields a differential equation in k, which
may be cast in the form of a perfect differential

AN (Ag/poCokPN/25 =0 . (€S

The solution of Eq. (C.5) is

K (pyCo/ Ag)'2 = constant . (C6)

We now choose the integration constant to suit the boundary conditions at
the source. Accordingly the definition of k is as follows:

k = (A PpsCos’ AosPoo) 2 (o)

where the density, the small-signal sound speed, and the ray tube area at
the source position are denoted py,, Cos, and Ay, respectively. Thus Eq. (C.4)
may be written

- -0 (C.8)

where
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W = (Ag 00.Cos/ AgsPoCo) 2 P' . (C.9)

Equation (C.8) does not have quite the same form as Eq. (B.2). To
get the desired form, we introduce another transformation, this time of the
independent variable:

Z=1Is) . (C.10)
By the chain rule, we find that Eq. (C.8) can be written as follows:
(2W/ZXAZ/35) = [(B2A3400.C 055V (B2AG04Co%N) (By/PsCos IWOW/DL . (C.11)

Putting
3Z/95 = (B2 A.005C0s>)/ (B, 2A00Co”) (C.12)

gives Eq. (C.11) the form of Eq. (B.2):

= > - —= =0 (C.13)
3 ]
o7 PosCo ot

Equation (C.12) must now be solved subject to the condition that Z = 0 when
S =S, The required solutfon Is

S, 2A 5\ 12
(ﬁ 0s Pos Os) ds

Fz Ao 0o Cg

(C.19)
So

Z is called the distortion range variable. Equation (C.13) has the desired

form.
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In this section the simplification of the nonlinear geometrical
acoustics equation, Eq. (B.10) is discussed. The approach taken to reduce the
equation is similar to that used in the previous chapter to simplify the
linear geometrical acoustics equation, Eq. (3-C.17). Since self-refraction
is assumed to be negligible, the eikonal equation from linear geometrical
acoustics, £q. (3-C.18), is used to simplify the nonlinear geometrical
acoustics equation. The transport equation is reduced via two
transformations: one on the dependent variable, the pressure, and the other
on the independent variable, the path length. The transformation of the
pressure corrects for the geometrical spreading of the wavefront; the
transformation of the path length corrects for the increase, or decrease, in
distance required for the waveform to distort a prescribed amount. In the
finite amplitude case, the transforms are £qs. (C.9) and (C.14). The
corresponding transforms in the linear case are Eqs. (3-€.7) and (3-E.11),
respectively. Note that in the linear case the transform of the dependent
variable does not depend on the static density or sound speed. This is
because in the linear problem the level of approximation is only first order,
whereas in this chapter the level of approximation is consistently

maintained at second order.

D. The Solution

Now that the equation for propagation in an inhomogeneous
medium has been cast in the same form as the equation for plane wave in a
homogeneous medium, the solution may readily be obtained. The plane wave

equation, Eq. (B.2), is satisfied by the Earnshaw solution (see, for example,
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Blackstock 1972). Given the boundary condition
PP=g(t)=g(t') at x=0 |, (D.1)
the solution of Eq. (B.2) is

P'=g(¢) , (D.2)
where
¢ =t +pxg(e)/cy? . (D.3)

For the case of an inhomogeneous medium the boundary condition is
Pl=gt)=g(t') at s=s;, . (D.4)

This transforms to
wW=g(t') at Z=0 . (D.S)

The solution is therefore the following equation

w=g(¢) , (D.6)
where
¢ =t'+pzg(e)/c,?2 . (D.7)
E. Simplification of the Distortion Range Variable Transformation
In this section the integral for the distortion range variable Z,
3 j Eq. (C.14), is placed in the more compact form suggested by Morfey (1984a).
3 Since spreading waves in a mildly inhomogeneous medium are similar to
e spherical spreading waves, Morfey's approach is to define the distortion
3
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range variable for an inhomogeneous medium in a form similar to that for a
spherically spreading wave in a homogeneous medium ( Z = s, An (s/s,) ;
Blackstock 1966). Morfey's definition is as follows:

Z=s5, In(s6/sy) , (E.1

where s is the path length, s, is the reference path length, and G is the
dimensionless distance modification factor. As is shown below, G embodies
the effects of both ray tube geometry and ocean inhomogeneity upon the
finite amplitude distortion. If the quantity G is equal to 1, Eq. (E.1) reduces
to the form for a spherically spreading wave in a homogeneous ocean. As
Morfey (1984a) points out, if G is greater than 1, finite amplitude distortion
is greater than it would be in a homogeneous medium. The converse is true
If G is less than 1.

Starting with Eq. (C.12), we strive to force it into the form of
Eq. (E.1). This is done by differentiating both equations with respect to the
path length s, and then equating the differentials. fFirst, in terms of a new
thermodynamic variable a,

a = plp,cy) 2 (E.2)

Eq. (C.12) may be expressed as follows:

3

o

Z=[g, (@/aNA/A )2 ds (E.3)
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where a, is a evaluated at the source position. If Eq. (E.3) is differentiated
with respect to the the path length s, we are left with the integrand. We

§ [ P o 3
- -
Rl - I S L

K
5
[

L
e

U OODU T X i 4 ; SR Y Sy > ) ‘.‘ (A | () Tot W, 508 ‘. C . \ ' "l‘. C’, Molx ey -
ST ot T ‘.‘e&l"q,l‘-s‘ [ “':’ s‘,1.q"'*_v"*‘"'9."0:“"..'& "o :’n‘:’.‘,‘a‘"&‘?‘t !‘k‘tiﬁ’:’l ,':‘-, C‘A\.‘!:‘Lg’ X k.l*rf“t’lel'i..i LX ‘;5“-_i"-.‘“ﬁ“ﬂ“c"(gak - \i"ﬂ’;’

[y



77
define a new variable Y(s) equal to the integrand:

Y(s) = (a/a A/ Ay V2 (E.4)

in the next chapter, we use a computer ray model based on the assumption
that the ocean is azimuthally symmetric. Using this assumption, we
substitute for the ratio of the ray tube areas, A,/A,,, using a relation given
by Foreman (1983),

Ay/ Agg = (rT/s,?) (cos 6/ cos 8,) , (ES)

where
g =(a2/08,) (E6)

r is the radial range, z is the depth, and 6, is the launch angle. By defining a
new variable B(s), we see that

Y(s) = s,B(s) , (E.7)

where
B(s) = (r{)"'/2(cos 8/ cos 8" (a/a) . (E.8)

Equation (C.12) is now in the form of Eq. (E.7).
Now differentiate Eq. (E.1) with respect to the path length s and
equate the result with Eq. (E.7). The differential of Eq. (E.1) is as follows:

dZ/ds = (s,/6) (dG/ds) + Sy/S . (E.9)

If EqQ. (E.7) is used, it may be shown that

1/6(0G/ds) =B(s) - 1/s . (E.10)
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Solving Eq. (E.10) for G, and defining a new variable F(s), we see that
G=expF(s) , (E11)
where
F(s)= [, f(s)ds , (E.12)
and
1(s)=8B(s)-1/s . (E.13)

Thus the distortion range variable may be expressed in the form
of Eq. (E.1), and the quantity G may be evaluated using Eq. (E.11) if both the
ray path and the environment along the ray path are known. Thus 6
embodies both the effects of the ray tube geometry (via the area in Eq. E.8)
and the environment (via o in Eq. £.8) on finite amplitude propagation.

As was mentioned in Chapter 2, the main difference between
linear and nonlinear hydrodynamics equations can be explained using the
mathematical term ranking system. To form the linear lossless
hydrodynamics equations for inhomogeneous fluids, we retain first-order
terms and one type of second-order terms, inhomogeneity terms. To form
the nonlinear lossless hydrodynamics equations, we include one more set of
second-order terms: quadratic nonlinear terms. These terms govern the
finite amplitude behavior.
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CHAPTER S

NUMERICAL EVALUATION OF WAVEFORMS

A. Introduction

In this chapter we discuss a scheme for numerically implementing
weak shock theory for a lossy inhomogeneous ocean. Recall that in
Chapter 4 the transport equation for finite amplitude signals propagating
through an inhomogeneous ocean was reduced, via two transforms, to the
form of that for plane waves propagating through a homogeneous ocean.
Pestorius (1973) developed an algorithm for numerically implementing
weak shock theory in the case of plane waves propagating through a
homogeneous medium in a pipe. We start this chapter by reviewing
Pestorius’s algorithm. We then describe the differences between his
algorithm and the algorithm as it is used in this work; related details of
the algorithm are examined. Next the testing of the algorithm is
discussed, and the results of the testing are presented. In connection with
the testing, typical results of the program are shown.

Pestorius's algorithm involves propagating an arbitrary finite
amplitude waveform a small distance using a numerical implementation of
weak shock theory. The waveform is then Fourier transformed, and the
viscosity and tube wall effects incurred over that small distance are

79
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= accounted for in the frequency domain. The procedure is repeated until the
?S% desired propagation distance has been reached. Note that by using

zf Pestorius's algorithm we may account for the loss terms neglected at the
0l beginning of the analytic development.

;é Several differences exist between the algorithm as set forth by
232 Pestorius and the modified algorithm used in this study. All the

@ differences result from the fact that Pestorius’s algorithm was designed to
:{‘E aid in the study of nonlinear propagation of plane waves through a

‘E;.: homogeneous medium in a pipe, whereas we are concerned with spreading
i;:'. waves in an inhomogeneous ocean. Obviously the loss mechanisms

"h

i:vfé themselves are different; we account for the viscosity and relaxation of
’-ig!: seawater. From a computational point of view, two major differences are

(1) that our absorption coefficients change with position, and (2) that we

: must caiculate the distance over which the absorption acts. Other

oL differences are related to the choice of step size and starting conditions.
z;:; We recalculate the step size depending on the wave's current position,

::':k whereas Pestorious used a constant step size. Pestorius started his

?:_3_ waveform at range zero; we must select a reference position.

R A flowchart of the modified Pestorius algorithm is shown in

EE Fig. 5.1. The modified Pestorius algorithm is implemented in the program
% PLPROP.
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B. ication of Pestorius's Algorithm to Inhomogeneous Media

-

In this section we take a more detailed look at the modified

E K 2

i:‘; Pestorius algorithm. We first examine the weak shock subroutine :.
g WAVPROP, and then focus our attention on the calculation of attenuation and
'; dispersion. The section closes with a description of some considerations in
f the numerical evaluation such as choice of nondimensional variables, step }
. size, and starting range.
i 1. The Weak Shock Subroutine §;§
The program PLPROP is centered around the weak shock gsg
‘ propagation subroutine WAVPROP. This subroutine uses the Earnshaw i
' solution and the relative shock arrival time equation (see, for example, E
‘
k) Blackstock 1972) in finite difference form (Pestorius 1973, Egs. 4.2 and »
3 43). From the Earnshaw solution which describes the distortion of the :
’.E continuous portion of the waveform, one finds that the delay time ';
? associated with a given wavelet u is ‘
; Utk DN = t'(kh) - pey™2u LGN B.1) ;
" 3
k where t'[(k+1)h] gives the position of the wavelet after k+1 incremental
0 steps of size h, and t'(kh) gives the position after k steps. The delay time
:;; for each wavelet is calculated individually because each wavelet D
i propagates with a different velocity. The finite difference form of the '
' relative shock arrival time equation gives the value of t' associated with a "
particular shock, denoted t.', as follows: 3§
t, [(k+ 1Dh] =t '(kh) - phcy2{u,fkh,t ' (kh)] + u[kh,t '(kW)}/2,  (B.2) :L
;
3
b
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;:::;: where t_'[(k+1)h] is the value of t.' after k+1 steps of size h, and

%{i%: u, olkh,t.'(kh)] is the value of particle velocity after k increments of size h,
?}ii;,‘ These two equations, Egs. (B.1) and (B.2), are all that is required to describe
2%’;3‘, the propagation of weak discontinuities within finite amplitude waves.

r:i:? Several disadvantages are associated with having to transform
25?:: back and forth between the time and frequency domains. These problems
o are discussed in detail by Pestorius (1973, p. 91). We now address the most
:g:,o» significant of these problems. Equal time intervals between waveform

:‘I?::: points are required by the fast Fourier transform (FFT) which is used to
Z transform the waveform into the frequency domain. After one step in the
?; the WAVPROP subroutine, however, the waveform points are no longer

’2 spread at equal time intervals. To ensure that the points were equally

s;ai ' spread through time, Pestorius wrote the subroutine RESAMP. The

S?':' subroutine RESAMP unshocks the waveform by spreading the shock over at
i:E?, least one time interval. Therein lies the problem; this does not correspond
:?jw with the physics of the situation. The effects of the problem are reduced
E%%: by having many data points closely spaced in time. As can be seen in the

' later section on testing, the effects of this problem are small. |
.{{ Another problern is aliasing (see, for example, Oppenheim and

-},r Schafer 1975). The waveform's spectrum shows some degree of aliasing
f’i because the resampled time waveform contains very high frequency

ey
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g
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information. The spectra of the waveforms studied in this report have a

-6 dB/octave slope, and the effect of aliasing is therefore small. Also the
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amount of attenuation increases with frequency and acts as a naturai
anti-aliasing filter.

2. The Application of Attenuation

In the introduction we mentioned that differences exist between
Pestorius's algorithm and the modified algorithm impiemented in PLPROP.
It was also noted that the major differences center on the two components
required to calculate the attenuation: the absorption coefficients and the
distance over which they act. Since Pestorius's algorithm was intended for
plane waves, our modified version operates in units of equivalent plane
wave distance. Consequently the true distance must be calculated before
the attenuation can be applied. To obtain the true propagation distance we
use Eq. (4-E.1). The more compact form of the distortion range variable
requires the calculation of the quantity G.

The numerical evaluation of G requires knowledge of both the
acoustic ray path and the environment along the ray path. Knowledge of the
environment is usually obtained by measurements made during the course of
an experiment. For our purposes we consulted tabulated data and chose
plots of temperature and salinity versus depth (hereafter referred to as
temperature and salinity profiles) typical of the North Atlantic Ocean. The
profiles are shown in Figs. 5.2 and 5.3. Once the temperature and salinity
profiles are known, the sound speed profile may be readily calculated
(Lovett 1978).

As was pointed out in Chapter 3, the acoustic ray paths depend
solely on the sound speed. In Chapter 4 it was noted that finite amplitude

waves follow the same ray paths as their small-signal counterparts. We
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may therefore use a linear acoustic ray model to calculate the ray paths
for the finite amplitude case; the ray model used in this study is MEDUSA
(Foreman 1983). MEDUSA assumes an azimuthally symmetric environment
and is capable of calculating the ray paths even if the sound speed varies
with both depth and range. However, in order to keep our analysis simple,
we do not make use of this capability. We are therefore assuming that an
ocean may be modeled by a single sound speed profile, a stratified ocean.

The RAYF AN subroutine in MEDUSA was modified to output
information about the ray path. The information includes path length,
range, depth, cos 6, and {. The angle 8 is defined in Fig. 3.2, and  is defined
in £q. (4-E.6). The cos 8 and { values are required to calculate the ray tube
area ratio defined in Eq. (4-E.5). This ray path information is calculated
and stored by RAYFAN for each MEDUSA step. MEDUSA varies its step size in
order to maintain a constant degree of accuracy. It is therefore assumed
that this step size is sufficiently small to accurately perform the
numerical integration outlined below.

Since both the environmental information and the ray path
information are available, the quantity G may be numerically evaluated.
Applying a second-order numerical integration scheme to Eq. (4-E.11),
Morfey (1984a) obtained the following equation:

§

TR (R W2 - NG - )12 (8.3)
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where h is the step size (s; - s;_,) in arc length. The function f(s) is defined
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in Eq. (4-E.12), and f'(s) is the derivative of f(s) with respect to s. To

::5 obtain the quantity G, we integrate along the ray path using Eq. (B.3) and A
’12 then substitute the resulting value into Eq. (4-E.10). The program CALCG
B implements Eq. (B.3) and calculates the quantity G at each of the MEDUSA
}; steps. Since CALCG requires ray trace data as an input, MEDUSA is run E
*’ first, and a file of ray trace data is stored. CALCG appends the value of G :

for each step to the ray trace data file. The modified ray trace data file is

.;7 used as input to PLPROP. In this way PLPROP has access not only to the %
,. environmental information along the ray path, but also to the quantity G. E
§| PLPROP can therefore convert the distortion range variable into the true f,
distance which is required to evaluate the amount of attenuation associated '
o with a propagation step.
" The second major difference between Pestorius's algorithm and %
i the modified algorithm implemented in PLPROP is that our absorption S
' coefficients vary along the propagation path whereas Pestorius’'s were E

constant. The variation of the temperature and salinity causes a 3
e corresponding variation in the absorption coefficients. .
;; Empirical relations derived by Frangois and Garrision (1982) are 3
g used to calculate the absorption coefficients. Frangois and Garrision ‘
considered three sources of attenuation: viscosity and the relaxation '
“ mechanisms associated with magnesium sulfate and boric acid. Each of the $
relaxation mechanisms has a small amount of dispersion associated with it. “
' The dispersion is calculated using Blackstock's technique (1985). The %
Iy dispersion due to each of the two relaxation mechanisms is added. 4
3 The environmental information used as inputs to Frangois and ,.
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Garrision's empirical relations was obtained from the temperature and
salinity profiles via a cubic T-spline (see, for example, Foreman 1983). For
the splines to be used, the depth at the position of interest must be known.
The depth is, however, only known at specific points along the ray path
since MEDUSA steps through range. To evaluate the depth for points in the
middle of a MEDUSA step, PLPROP uses a linear interpolation scheme.

Once the true propagation distance and the absorption coefficients
have been calculated, the attenuation and dispersion may be applied to the
waveform. However, PLPROP applies the attenuation due to viscosity only
when the waveform contains no shocks. The reason for this is that weak
shock theory implicitly accounts for most of the viscous attenuation when
shocks are present. Thus if PLPROP were to apply viscous attenuation to a
waveform containing shocks, the viscous attenuation would have been
accounted for twice, once by the weak shock theory and once by PLPROP. To
separate the two cases, PLPROP measures the distance the wave propagates
both with and without shocks, and then applies absorption accordingly.

The reason why the losses associated with weak shock theory are
assumed to be due to viscosity is as follows: In weak shock theory the
losses are assumed to be concentrated at the shock. Since the shock
contains mostly high freyuency information, and the attenuation mechanism
which is dominant at high frequencies is viscosity, viscosity alone must be
responsible for the losses at the shock. Other attenuation mechanisms,
such as relaxation, do not attenuate the shock at a rate sufficient to stop

the shock from becoming multivalued.
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3. Other Considerations

PLPROP works with nondimensionalized time and distance
variables. The time is nondimensionalized by dividing it by a time t,
characteristic of the input waveform. For example, in the case of a weak
shock with an exponentially decaying tail, a convenient characteristic time
is the initial 1/e decay time. The characteristic distance used to

nondimensionalize the distortion range variable is defined as follows:

R. = Cot./Be . (B.4)

The definition for R, presented in Eq. (B.4) is preferred over c,t. alone
because Eq. (B.4) represents a distance over which the waveform would
undergo a significant amount of distortion. In the case of a sinusoidal
wave, R, is the shock formation distance. PLPROP propagates the waveform
in steps of nondimensional distance sigma g, defined as follows:

0=2/R, . (B.5)

Several factors must be considered in choosing PLPROP's step
size, denoted Ao. Pestorius (1973) tried a variety of step sizes and settled
on the value of 0.01. Pestorius aiso noted that several, typically 10, of the
0.01 Ao steps should be taken before the attenuation and dispersion are
applied. This reduces the number of FFTs, and hence, the effect of the
errors associated with the transformations between the time and
frequency domain.

Step size considerations for the modified Pestorius algorithm
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f‘ﬁ':’s implemented in PLPROP are somewhat different than those used in the

.,5'32; original algorithm. One of the consequences of Eq. (4-E.1) is that the true
Ei{;;'é distance corresponding to 0.01 Ao increases with the distance the wave has
L propagated. Close to the source, where the signal is stronger and finite
22::;’ amplitude effects are important, ten 0.01 Ac steps may correspond to a
?1‘22:3 very small distance. To calculate the number of 0.01 Ao steps to take,

R PLPROP examines the absorption coefficient, calculated in dB/m, from the
e‘,‘;: center frequency cell of the FFT. The magnitude of the reciprocal of this
;;'.:; coefficent gives, for that particular frequency, the propagation distance
‘ required for a 1 dB drop in the amplitude. The waveform is then propagated
ii{j ! the number of 0.01 Ag steps corresponding to the 1 dB drop distance. This
":‘i;' differs from the fixed value of ten 0.01 Ac steps used by Pestorius.

o Compared with Pestorius’s original approach, the number of applications of
B absorption near the beginning of the ray path is reduced. This corresponds
355%33': to the decreased role of absorption.

G

) . On the other hand, the number of 0.01 Ao steps is never permitted
:2:;:5'5 to go below 10. When the wave is far from the source, the 1 dB drop

';"';'g distance may correspond to less than one 0.01 Ao step. Thus to combat the
g errors associated with transforming between the time and frequency

;*E:' domains, the number of 0.01 Ao steps between applications of absorption is
iy

*::;;":*EE fixedat 10.

.__ Another difference between the algorithm as developed by

1, Pestorius and the algorithm used in PLPROP is the requirement for a

é , starting, or reference, range. Because Pestorius dealt solely with plane
e waves, his starting range was always zero. The reference range used in
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; ;
'“ PLPROP was developed by Morfey (1984b), who chose the reference range to :-
:, be equal to the characteristic distance R.. Morfey formed the ratio of the 't
: nondimensional shock pressure, AP/p,Cy2, to the nondimensional time !_;‘
q constant, c,t./R. He observed that the ratio is approximately equal to 1/p if f
,. the nondimensional shock pressure is 0.06 and the range is R.. The value of :':
:: 0.06 for the ratio AP/poco2 corresponds to the upper limit on weak shock :;
7 theory (Pestorius and Williams 1974). Consequentially, Morfey chose the "
’: model’'s starting conditions to correspond to a nondimensional pressure of %3
. 0.06 and a starting range of R.. %'
i. Another feature of considerable importance is PLPROP's ability to ;
: selectively include the physical mechanisms that affect the propagation. '3
i The finite amplitude effects may be switched off altogether or remain in *
E; effect only until the wave reaches a certain range. Viscosity and :,:
X relaxation may be switched on individually. The dispersion due to '
.l relaxation may be included or not. The absorption coefficients may be -
8 calculated from the local environment or may be based on some average Y
'_ value. The ability to switch the mechanisms on or of f permits each of them ,’
.'., to be examined individually. Ef
¥ X
i In this section we present some of the results of the tests Q
0 performed to verify the accuracy of the modified Pestorius algorithm. The "
i: first program discussed is CALCG which calculates the quantity G. The
W,

second program discussed is PLPROP. In each case the numerical results of
the programs are compared to results obtained from analytic solutions. 5
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e The percent error in the numerical results are calculated. |
'e::‘ As mentioned earlier in this chapter, the quantity 6 is calculated (
(4
;ﬁ‘t‘g using Eq. (B.3). The program CALCG evaluates G from ray path information
‘9"&. (]
e provided by the ray tracing program MEDUSA. To verify the accuracy of
,n'S;E CALCG, we compare its results to the known analytic expression for G for
s
:§?§;: the case of a constant gradient sound speed profile (Morfey 1984a). Morfe
,&:_‘.it g g
e has shown that, in this case, 6 is related to 8 by the following equation:
e sin 6 - sin 6\ / tan (/4 + 6/2)\Sin 6,
g 6(8,, 6) = ( ) ( ) (.1
Rz (0 - 6,) cos8/ \tan(11/4+6,/2)
 »
g 1 where 0 is the angle between the ray path and the horizontal, and 6, is the
3§ angle 8 at the reference path length. In our test the dependence of sound
o speed on depth was as follows:
ot Co= 1462+ 0017622 (0.2)
1' I:o
J
. where z is the depth in meters, and ¢, is the sound speed in m/s. The sound
t:_.r'!"-
-;':;!f speed was assumed to be constant with range. The source was assumed to
0
ey be at a depth of 2500 m, and the launch angle was 22.5° The results of
A% Eq. (D.1), the numerical result of CALCG, and the percent error are
: ' presented in Table 5.1. As can be seen from the table, the error is
3 consistently below 0.01 %.
_ Y

i

i :“.-"f-..q-

In an effort to check the accuracy of PLPROP, we compared the

-

program's results with results obtained from the analytical expressions

(3

I I
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developed in Appendix C. The expressions in the appendix are for a weak
shock with an exponentially decaying tail which is spreading spherically
through a homogeneous medium. The expressions give the
nondimensionalized peak pressure, the nondimensional 1/e decay time, and
the nondimensional relative shock arrival time. The peak pressure is
normalized to the initial peak pressure. The 1/e decay time is normalized
to the initial 1/e decay time. The shock arrival time is measured relative
to the travel time calculated assuming the small-signal sound speed c,. To
make the comparison, we simulate a homogeneous ocean by giving MEDUSA a
constant sound speed profile; the resulting acoustic ray paths are straight
lines. If one of these ray paths is used as input to PLPROP, and the
attenuation in PLPROP is "turned off*, PLPROP's results should be the same
as those for a spherically spreading wave in a lossless homogeneous ocean.
A comparison of the analytic and numerical results is presented in
Table 5.2. It is seen that the error is generally in the range :0.25 %.
PLPROP plots the time waveforms and their corresponding energy
spectra. The time waveforms and energy spectra corresponding to the
values of the “numerical” column in Table 5.2 are shown in Figs. 5.4 and 5.5,
respectively. The horizontal axis in Fig. 5.4 is in units of nondimensional
retarded time. The vertical axis is the nondimensional pressure. The
pressure shown here and that listed in Table 5.2 is the equivalent plane
wave pressure, that is, the purely geometrical effect of spherical
spreading has been removed. The plots of the time waveforms from

different positions along the ray path have been superimposed.
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Nondimensional Pressure
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Wy FIGURE 5.4
Xl TIME WAVEFORMS FOR EXPONENTIALLY DECAYING PULSE
PROPAGATING SPHERICALLY THROUGH A LOSSLESS OCEAN
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The energy spectra in Fig. 5.5 are also superimposed. The
horizontal and vertical axis in Fig. 5.5 are frequency in Hz and energy
spectrum level in dB//1 J/m2-Hz. The energy spectrum levels correspond
to the energy in the equivalent plane wave; that is, the effects of spherical
spreading are removed. The frequency scale is correct as shown. The
different spectra correspond to the waveforms from different points along
the ray path.

The above results indicate that the weak shock propagation in the
modified Pestorius algorithm works to a high degree of accuracy, at least

in the case when the inhomogeneous medium is made to appear homogeneous.

The other main component in the algorithm is the application of absorption.
It was tested by (1) checking as to whether the absorption coefficients are
correct, and (2) propagating a sawtooth wave with finite amplitude effects
switched of f and the absorption switched on. The resulting waveform was
compared with that obtained from a separate calculation based on the
Fourier series solution of the sawtooth wave. Each of the Fourier
coefficients was attenuated and phase shifted to simulate the application
of attenuation and dispersion by PLPROP. The resuits of both calculations,
the Fourier series summation and PLPROP, were in very close agreement.

No straightforward way of verifying the accuracy of the
combination of finite amplitude effects and absorption exists. However,
since the two major components of the program work well separately, it is
reasonable to assume that they will work well together. The computer
program PLPROP is presented in Appendix D.
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CHAPTER 6

2 RESULTS

i

;

2,3 A. Introduction

] in this chapter the effects of nonlinear distortion and ordinary

) attenuation and dispersion on the propagation of signais in an

o inhomogeneous ocean are Investigated. The investigation Is conducted using

s the numerical algorithm discussed in the previous chapter. Some of the

' results have been reported previously (Cotaras, Morfey, and Blackstock

1984). The signals examined are transients, specifically a weak shock with

an exponentially decaying tatl (hereafter referred to as an exponential

pulse) and a more realistic explosion waveform containing one bubble pulse.

¢ First the ocean environment is discussed, and two specific ray paths are

¢ selected. Then the specific waveforms used are discussed and presented

" with their energy spectra. Next the effect of inhomogeneity on nonlinear

| distortion is examined. The effect is investigated by propagating an
exponential pulse through a lossiess stratified ocean and comparing the

" result with that obtained for a lossless homogeneous ocean. The combined

'\

. and individual effects of nonlinear propagation and ordinary attenuation and

¢

:
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dispersion are then examined. These effects are investigated by

4 propagating the same exponential pulse through a stratified ocean and ‘
b comparing the results obtained considering ordinary attenuation and !
dispersion only, finite amplitude effects only, and the combination of the L
i'; two. We also briefly examine, in terms of the arrival time of the peak :
3 pressure, the role of dispersion in long range propagation. Lastly we try to
) answer the question, "to what distance are finfte amplitude effects
important?" This is done by comparing and contrasting the energy :;
& spectrum obtained considering finite amplitude effects over the entire ’
x propagation path with those obtained by neglecting finite amplitude effects ‘
’ after certain distances, namely 150 m and 1100 m.
,, 8. Design of the Mumerical Experiment ‘
% 1. Ray Paths '
9 The ocean environment and the ray paths selected are shown In ':
) Fig. 6.1. The horizontal axis is the range in km, and the vertical axis 1s the :
B depth Inm. As mentioned In Chapter 5 the ocean is assumed to be ;
;E': stratified. The salinity and temperature profiles used to caiculate the
} sound speed profile, shown in Fig. 6.1, are the same ones employed in
B Chapter S; see Figs. 5.2 and 5.3. The sound speed profile is shown at both !
K 0 km and 75 km, thereby indicating that the sound speed does not vary with
< range. The two ray paths shown start at different depths, 300 m and
4300 m, but have the same launch angle, 8° down from the horizontal. (The ]
v
:3;.
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angle appears to be greater than 8° because the horizontal and vertical axes
have different scales.)
%) The two particular source depths were selected for the following}
reasons. The shallow source depth was chosen because ocean acoustic
i measurements are commonly made at this depth. The deep source depth was
chosen primarily to permit the study of an explosion waveform that
Includes the first bubble pulse. More details are given in the next section.
i The criteria for selecting the ray path from each of the two

?;» depths are the same. Because reflections and caustics cannot be *
i?:_ accommodated by our computer algorithm, they must be avoided. At the ‘
;:‘:é same time, a long ray path is needed in order to determine whether &
;;"t nonlinear distortion continues to accumulate after long propagation

distances. The rays selected travel a moderate distance, SO to 70 km,

éz without interacting with the surface or the bottom and without passing ;
X through a caustic. Shown in Figs. 6.2 and 6.3 are the families of rays from :
which the rays shown in Fig. 6.1 were picked. InFig. 6.2 (the shallow
5;{ source) the ray launch angles vary in 0.5° increments from 0° to 15° ‘
3'.:: measured down from the horizontal. The ray selected, noted in the figure, !
" ‘ avolds the caustic region that starts at about 33 km on the upper edge of g
;E, the family of rays. The deep source family (Fig. 6.3) has ray launch angles

’:.;E that vary in 0.5° increments from -5° to 10°. The ray paths all reflect from :
~ the surface before passing through a caustic at about 62 km. The ray ,
5 selected from this family is noted. From now on the ray path starting at
i 5
o ;
5
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the shallow source is referred to, for short, as the shallow path; similarly
the other path is referred to as the deep path.

2. Signals
; The basic criteria for selectlng the waveforms to studg are as

R e

X follows: (1) They must be waveforms for which finite amplitude effects
: are important. (2) They must be as realistic as possible, and yet short
enough to be properly sampled by our computer program. The signals

S
p2aond

TR

X A

examined are transient pulses similar to those caused by underwater

-

£

R .
-

‘big

explosions. The explosives commonty used in long range propagation studies
4 generate the high sound pressure leveis at which nonlinear effects play an

W

o

important role in propagation. It is rare that a long range propagation

-

-~

experiment is conducted using an intense periodic source. For this reason
we exclude the study of periodic signals.

With regard to realism of the waveforms used, it is noted that
wakeley (1977) developed an empirical relation for an underwater explosion
waveform which includes the first four bubble puises. The waveform has
been shown to give a close fit to experimental data; it is, however,
somewhat complicated. Morfey (1985) developed a simplified version of
wakeley's waveform which is shorter in time duration and is therefore

- N, e

: more suitable for use in our computer program. (The simplified Wakeley

2 waveform is shown on p. i11.) The approach taken by Morfey was to (1)
truncate the wakeley waveform at the zero crossing after the first bubble
b pulse and (2) remove the explicit dependence on the charge weight by
selecting a nondimensional time base that is related to the charge weight.

=
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As the characteristic time used for nondimensionalization, Morfey picked
the initial 1/e decay time. He found that (Morfey 1984b) use of the
empirical scatling law for the peak pressure (Arons 1954) and the starting
conditions mentioned in Chapter 5 (nondimensional shock pressure of 0.06
at arange of R.) leads to the following expression for the 1/e decay time:

6,=59W" | (6.1)

where 8, is the 1/e decay time in yus and W is the equivalent TNT charge
weight in kg. Equation (6.1) connects the initial 1/e decay time of the pulse
with the charge weight. By simplifying Wakeley's expression so that it
includes only one bubble pulse and by using 6, to calculate the
nondimensional time T, Morfey (1985) obtained the following expression:

P = exp(-T) + 0.16exp[~(T - Tg)/T,] - (/2T ) 1+0.16T,)[sin(nT/Ty)| , (6.2)

where Tg and T, are the nondimensional bubble pulse period and bubble pulse
time constant, respectively. The bubble pulse period is the time between
tne initial pulse and the bubble pulse. The bubble pulse time constant is
related to the rate of rise and decay of the bubble pulse. The bubble pulse
period and time constant are defined in the following expressions:

Tg=35600(z+10.1)5/6 (6.4)
and

T,=165(z+10.)" V2 (6.5)

where z is the depth in m.
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It can be seen from Eq. (6.4) that, for large depths, the bubblie

R puise period of an explosion is approximately proportional to the inverse of
3 the depth. Accordingly the explosion waveform from a source at 300 m has
K) a long bubble puise period, aimost 300 times the initial 1/e decay time. In
;. order to maintain the accuracy stated in Chapter 5, our computer program
§f. . requires at least 32 points in the initial 1/e decay time. Thus 9600 points
5 are required if the shallow source explosion waveform is to include the

;% first bubble pulse. The total number of points in our time waveform is,

Ky however, restricted to 4096 by computer space limitations. Hence we
cannot include the bubble pulse in the explosion waveform from the shallow
; source. A much deeper source, however, has the shorter bubble pulse

] period which fits within our limitations. We chose our second source depth
i to be 4300 m.

EE A simpler waveform is more appropriate for the shallow path

a since the detalls of the more complicated waveform cannot be included.
5 Shown in Fig. 6.4 are the time waveforms and corresponding energy spectra

! of the modified Wakeley waveform for the 300 m source (Fig. 6.4a) and the
K exponential pulse (Fig. 6.4b). Both waveforms correspond to a 0.818 kg TNT
explosion at the reference range of 0.4 m. The reference range is

z. calculated using Eq. (5-B.4) which assumes a peak pressure level of 282.6

i dB//1 yPa. The initial 1/e decay time Is S5 ys. Since the time waveforms

’ and frequency spectra of Figs. 6.4(a) and 6.4(b) are very similar, it was

" ~ decided that the simpler signal, the exponential pulse Fig. 6.4(b), would be

L the signai used for the shallow path.
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: o
Shown in Figs. 6.5(a) and 6.5(b) are the modified Wakeley "

waveforms and corresponding energy spectra for the 0.818 kg and 22.7 kg k

TNT explosions at a depth of 4300 m. The waveforms are calculated at the &5

y reference ranges of 0.4m and 1.1 m, respectively. Because the explicit ::
? dependence on charge weight has been removed from the expression for the .E
: explosion waveform, Eq. (6.2), the nondimensional time waveforms are .

identical. If the time waveforms had been plotted in terms of dimensional

-5

units, as are the frequency spectra, the waveforms would appear different.
The 1arger explosion would have a longer bubble pulse period. This can be
seen by noting that the 22.7 kg TNT explosion energy spectrum is shifted
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R - .-, ] : 1
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down in frequency in comparison to the other spectrum. The frequency

PR
b
T b T T e e e ey

2 shift is caused by the increase in charge weight. Since ordinary absorption

:: and finite amplitude effects scale differentiy with frequency, it is b
i; expected that, after the signais propagate a moderate distance, their :
b, spectral shapes will be different. It is for this reason that two different v

charge weights are considered.

AP v,

C. Effect of Medium inhomogeneity on Nonlinearity
The effect of ocean inhomogeneity upon finite amplitude

;_4; propagation is small. This conclusion was first quantitatively K
" demonstrated by Morfey (1984a). To understand why the effect is small, *"
3 recall the definition of the distortion range variable, Eq. (4-E.1). All the
D effects of ocean inhomogeneity are embodied in the nondimensional E
parameter G. The value of G for the shallow path is approximately 3. W
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Physically this means that to undergo the same amount of distortion in a
homogeneous ocean, the signal would have to propagate three times as far.
This is not, however, a 1arge enhancement because, as can be seen from
Eq. (4-E.1), the distortion range variable--and hence the finite amplitude
effects--are a function of the logarithm of the distance propagated.

As an example of how small an influence inhomogeneity has,
consider a signal propagating along the shallow path. If the reference path
length is 1 m, the path length is 20 km, and the value of G is 3, the
distortion range variable is 11. If the ocean is homogeneous, the distortion
range variable for a 20 km path and a 1 m reference range is 9.9. Since the
amount of finite amplitude distortion is proportional to the distortion
range variable, the inhomogeneity enhances the distortion by only 11% over
the 20 km path length.

The enhancement of finite amplitude effects along the deep path Is
even smaller. There the maximum value of G is approximately 1. Hence in
terms of nonlinear distortion there is effectively no difference between
propagating through a homogeneous ocean and propagating along the deep
path through an inhomogeneous ocean. It is therefore concluded that the
effect of inhomogeneity upon nonlinear distortion is small.

We now quantitatively demonstrate the small effect of
inhomogeneity on distortion by comparing the waveform for a homogeneous
ocean with that for an inhomogeneous ocean; examine Fig. 6.6. The initial
waveform is the exponential puise shown In Fig. 6.4(b) but on an expanded
time scale. The other waveforms result from (1) propagating the signal
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PEAK PRESSURE
= 282.6 dB// |¢Pa
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Nondimensional Pressure
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FIGURE 6.6
WEAK SHOCK WITH AN EXPONENTIALLY DECAYING TAIL
AFTER PROPAGATING 58.1 km THROUGH
(1) LOSSLESS HOMOGENEOUS OCEAN AND
(2) LOSSLESS STRATIFIED OCEAN
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s:ti 58.1 km along the shallow path through a lossless ocean and (2) propagating
':‘ the same signal to the same distance through a lossless homogeneous ocean.
‘* Note that the strong effect of geometrical spreading has been suppressed
& by plotting the transformed pressure given in Eq. (4-C.9)

é.: nondimensionalized by its initial value. The differences in amplitude and

": relative shock arrival time between the two resultant waveforms are

iy clearly small (recall that gn G is small compared to £n (S/sy)).

Ef':‘ On the other hand nonlinear effects are still important; reexamine
E:E Fig. 6.6. The shock arrival time is approximately 165 ys (three times the

_ ‘ initial 1/e decay time) in advance of the linear theory prediction, and the
5‘ peak pressure is approximately 1/3 of its original value. The nonlinear

i distortion may therefore be thought of as “stretching™ the initial signal as
well as attenuating it. Note that the “lossless ocean” is not really lossless
3;;': because the nonlinear distortion takes account of 10sses at the shock.

BS However, losses due to the medium which affect both continuous and

: discontinuous waves, such as relaxation, are not explicitly accounted for;
E:: hence the term lossless ocean.

e

:?. D. Ihe Combined Effects of Nonlinearity and Absorption

%% Throughout the propagation of a finite amplitude wave, the effects
9 of both nonlinearity and ordinary attenuation and dispersion are at play. To
I more clearly examine the role of each in the propagation process, we first
; examine them separately, and then together. Figure 6.7 shows four

R waveforms, one of which is the initial waveform, the exponential puise of
{2
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PEAK PRESSURE
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FIGURE 6.7
WEAK SHOCK WITH AN EXPONENTIALLY DECAYING TAIL
AFTER PROPAGATING 58.1 km THROUGH A STRATIFIED OCEAN
CONSIDERING (1) ORDINARY ATTENUATION AND DISPERSION ONLY
(2) FINITE AMPLITUDE EFFECTS ONLY AND (3) FINITE AMPLITUDE
EFFECTS AND ORDINARY ATTENUATION AND DISPERSION
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Fig. 6.4(b) on an expanded time scale. The others are the resuiting
waveforms after propagating 58.1 km atong the shallow path considering
(1) ordinary attenuation and dispersion only, (2) finite amplitude effects
only, and (3) both finite amplitude effects and ordinary attenuation and
dispersion. It is clear from the figure that by itself neither finite
amplitude effects nor ordinary absorption can correctly account for the
shape of the resuiting waveform; both are required. The finite amplitude
effects attenuate the wave while causing it to try to form, or to maintain,
a shock. Ordinary absorption attenuates the wave, thus causing the wave to
become rounded.

It is interesting to examine the effect of dispersion on the
position of the peak pressure. Consider the propagation, neglecting finite
amplitude effects, of the exponential puise along the shailow path. The
waveforms in Figs. 6.8(a) and 6.8(b) are obtained at various positions along
the shallow path, from the reference range 0.4 m out to S8.1 km. The
calculations were made first without dispersion (Fig. 6.8a), and then with
dispersion (Fig. 6.8b). At longer ranges the effect of dispersion is clear; it
shifts the waveform forward. in Fig. 6.8(a) the peak pressure continuously
moves backwardg; i.e., the effective propagation speed of the peak is less
than ¢, The same is true of the waveforms in Fig. 6.8(b) for distances up to
8.6 km, but beyond that distance dispersion pulls the peak forward. By the
time the wave has reached the maximum distance of 58.1 km, tr;e shift of
the peak pressure due to dispersion s approximately 0.8 of the initial 1/¢
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=3 ' >

-

decay time. This would be a significant amount of time if one were trying

to add signals coherently. .3'
InFig. 6.9 we again examine the effect of dispersion, but this time
finite amplitude effects are also included. In this case the waveforms at ‘
the lower ranges are resoived. Notice that in Fig. 6.9(a) the peak pressure ;:%
moves forward until a range of 3300 m is reached and then moves %
backwards. In Fig. 6.9(b), however, the forward movement of the the peak :3
pressure is monotonic. The forward movement is due first to finite .
amplitude efferts and in the end due to dispersion. i
Figure 6.9(a) enables us to examine the combined effects of ‘
nonlinearity and attenuation. As noted above, the peak pressure in i
Fig. 6.9(a) stops moving forward as the signal propagates beyond 3300 m. "
One might interpret this to indicate a change in the importance of finite f“»
amplitude effects relative to attenuation. From 3300 m on, ordinary P
attenuation s the dominant mechanism of diminution, whereas for ranges
less than 3300 m finite amplitude effects are the principal mechanism. It
is noted, however, that the amount of attenuation beyond 3300 m indicated &
in Fig. 6.8(a) is less than that over the corresponding distance in Fig. 6.9(a). ;
It 1s therefore concluded that, even though finite amplitude effects are not
dominant beyond 3300 m, they are still noticeable. Although the transition
point, 3300 m, applies only to this particular example, one can expect a ]
similar behavior for other signals of similar initial shape. .'
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W2 E. To What Distance are Finite Amplitude Effects important?
b
9: In this section we find that for a specific frequency range and

source strength, finite amplitude effects may be neglected beyond a certain

i distance. Ordinary absorption appears to dominate the propagation beyond
1 that distance. One explanation for the importance of ordinary absorption
over finite amplitude effects is that the effects of ordinary absorption
increase as exp(-as), whereas most finite amplitude effects depend on ¢
(Eq. 5-B.5) which is proportional to £n (s/sy).

To answer quantitatively the question posed in the heading of this
section, we conducted a numerical experiment involving two different
explosion pulses. The first is for a 0.818 kg TNT explosion at a depth of

4300 m, and the second, a 22.7 kg TNT explosion at the same depth. The
WX source waveforms and their respective spectra are shown in Figs. 6.5(a)
and 6.5(b). The procedure used is a simple one. The explosion waves are
numerically propagated to a distance of 23 km along the deep path

.::; accounting for attenuation and dispersion over the entire 23 km and
:."‘. accounting for nontinear effects as indicated below:

“wh Case A: nonlinear effects neglected entirely,

?&é‘ Case B: nonlinear efrects inciuded only up to range 150 m,

5!; Case C: nonlinear effects included only up to range 1100 m,

Fod Case D: nonlinear effects included for the entire 23 km.

he Case D is used as the basis of comparison.
Because the effective duration of the explosion puises in Fig. 6.5

IS much greater than that of the simple exponential puises (compare the
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wavefrorms of Fig. 6.5 with the initial waveform of F1g 6 6), time waveform
¥ resolution of the sort shown in Figs 66 through 69 1s not possible
Interesting results may, however, be found by comparing the spectra of the

W signals. The results are therefore presented in the form of energy
% spectrum plots. A few time waveforms are shown for clarity in

‘8!

: interpreting changes In spectra.

& 1. The 0.818 kg TNT Explosion Results

i The results of the numerical experiment involving the 0.818 kg
R TNT explosive are presented in Figs. 6.10 through 6.12. The dotted curve in
Fig. 6.10 is the initial energy spectrum at the reference range, 04m. The
dashed curve is the energy spectrum calculated neglecting finite amplitude
effects over the entire 23 km, Case A. The solid curve in the figures is the
energy spectrum calculated accounting for finite amplitude effects over
the entire path, Case D. Figure 6.11 shows a comparison of Cases B and D
and Fig. 6.12, Cases C and D.

We start our discussion by examining the behavior of the solid

PRI P

curve (Case D) and the dashed curve (Case A) in Fig. 6.10. Note that, as for

-

the time waveforms, the effect of geometric spreading has been removed.
The differences between the two curves are itemized below.
(a) At the high frequency end (above 15 kHz) the solid curve is higher.

HA XX AN,

(b) In the middle range (approximately 1.5 - 15 kHz) the dashed curve {s

.

higher. {
(c) At the low frequency end (below 1.5 kHz) the envelopes of the two E
: curves are about the same.
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v =
3;*:' (d) As the frequency decreases from about 400 Hz, the solid curve

tés rises above the dashed curve.

i (e) In the low frequency region the spectral peaks of the solid curve
ﬁ occur at slightly lower frequencies than the peaks of the dashed
3,;. curve.

e The differences cited above can be explained in terms of the

35:‘ nonlinear distortion of the wave. Compare the two time waveforms

‘, inserts. Difference (a) Is probably caused by the steepening of the

fi’ compression part of the bubble pulse. Difference (b) is probably due to the
Y increase in the decay time of the first peak (as the shock pulls ahead of the
x first zero). Differences (d) and (e) are probably due to the stretching of the
e time interval between the initial peak and the bubble pulse peak.

" We now examine the Case B and Case C spectra. In the following
}é:’ discussion of Figs. 6.11 and 6.12 we attempt to answer the question, “to

‘*‘f what distance are finite amplitude effects important?" The inclusion of
:..E finite amplitude effects up to 150 m (Fig. 6.11) gives a 23 km spectrum that
::t:'? follows the Case D spectrum up to about 6 kHz. Less important effects are
L seen at the very low frequencies. Figure 6.12 shows that the Case C

*‘ spectrum also follows the Case D spectrum up to about 6 kHz, although it
1‘2';&‘ does so more closely than the Case B spectrum. The tentative conclusion,
L2 namely that nonlinear effects may be ignored beyond a certain distance,

:*T : depends on the frequency range in which one is interested.
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2. The 22.7 kg TNT Explosion Results
We now turn our attention to the case of a 22.7 kg TNT explosion.
As can be seen in Figs. 6.5(a) and 6.5(b), the energy spectra of the two o
explosions are very similar except that the larger explosion has an overaii -.
higher spectrum level and is shifted down in frequency. To avoid peak i
pressures too high to be handied correctly by weak shock theory, we :;
increase our reference range to 1.1 m (for the 22.7 kg pulse oniy), thereby EE
making the peak pressure at the reference range the same for both the g
0.818 kg and the 22.7 kg TNT explosion (282.6 dB//1 ywPa). Because of the
frequency shift of the spectrum, the nonlinear distortion of the two pulses ?
is much the same (finite amplitude effects scale with frequency). The only
real difference is the effect of attenuation, which should be iess for the 4
puise from the larger charge. {
The results in the form of energy spectra are presented in '
Figs. 6.13 through 6.15. The initial spectrum is shown as the dotted curve :
in Fig. 6.13. In this figure the dashed curve is the energy spectrum :
calculated neglecting finite amplitude effects entirely, Case A. The solid '~
curve in Figs. 6.13 through 6.15 is the 23 km energy spectrum calculated »
accounting for finite amplitude effects over the entire path, Case D. In
Fig. 6.14 the dashed curve is the spectrum for Case B; inFig. 6.15 the dashed
curve 1s the spectrum for Case C. 5
The general observations made of the solid and dashed curves in (
Fig. 6.13 are the same as those made of Fig. 6.10, except that the |
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ENERGY SPECTRA OF 22.7 kg TNT EXPLOSION AFTER PROPAGATING 23 km
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frequencies cited previously are higher. The differences between the solid
and dashed curves of Fig. 6.13 may be summarized as follows.
(a) Above approximately 10 kHz the solid curve is higher.
(b) From about 500 Hz to 10 kHz the dashed line is higher.
(c) The solid curve is slightly higher from 50 to S00 Hz.
(d) Over the same frequency range as (c) the spectral peaks of the
solid curve exhibit a slight downward shift.
The physical explanations for these differences are the same as those for
the differences witnessed in Fig. 6.10. The nonlinear steepening of the
compressional part of the bubble pulse accounts for difference (a).
Difference (b) is due to the increase in the decay time of the first peak. _:.i
Differences (c) and (d) are due to the slight increase in the period between .
the initial pulse and the bubble pulse. i
we now address the question, "to what distance are finite

amplitude effects important?” As in the case of the 0.818 kg explosion, the ;;:
answer may be obtained by comparing the Case B and Case C energy spectra éﬁ
with the Case D spectrum. The Case B and Case C spectra (Figs. 6.14 and
6.15, respectively) follow the Case D spectrum closely for frequencies ;
below 4 kHz, although the Case C spectrum more closely duplicates that of
the Case D. It is therefore concluded that the finite amplitude effects can A
be neglected after a certain distance, and that the distance depends on both '.
frequency and source strength. Since the differences between the Case C :
and Case D spectra are approximately the same for both the 0.818 kg and 3
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¥ 22.7 kg TNT explosions, it is also concluded that the differences between

the two spectra due to absorption are smail.

R T o8
2

-

"=

In summary it is noted that the prevailing sentiment that

-

"nonlinear effects are important only close to the source” is confirmed

2 e
o

5 i

quantitatively. Beyond a distance that depends on frequency and charge

-
i
3 &
- ew .

weight, nonlinear effects may be neglected. Notice, however, that the
0 calculations are for rays that encounter neither reflections nor caustics.
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e In this report the propagation of finite amplitude signals through '
:; an inhomogeneous ocean is investigated both analytically and numerically. i
" The theory used is that of nonlinear geometrical acoustics. The amplitude ;
of the signal is assumed to be small enough that self-refraction may be 1
0’ \
E?: neglected. Another assumption is that the acoustic field consists only of '
A f
;%5: outgoing waves. The effects of reflections and focusing are not considered. !
*n"l )
Losses are accounted for directly in the numerical routine; the analytic M
': work is performed neglecting all losses except those at the shock. In the
§ numerical study the ocean is assumed to be stratified, whereas the analytic \

work 1s for a fully inhomogeneous ocean in which temperature, salinity, and
Wy density vary with position.
The analysts starts with the presentation of a scheme for ranking
the terms in the hydrodynamics equations according to their degree of
smaliness. The ranking scheme s then used to simplify the hydrodynamics

)

¥ equations for lossiess inhomogeneous fluids for (1) small-signal and

pLl f
.;Q' )
.:4

v
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a '
& (2) finite amplitude waves. From these simplified equations the theories of

:'é; linear and nonlinear geometrical acoustics are developed. The eikonal 4*
A equation is obtained and found to be the same for both small-signal and

b finite amplitude waves. The transport equation is, however, different for :‘,
g;: the two cases. An equation for the ray paths is derived from the eikonal a
& equation and the relations of vector calculus. In the case of a constant :
o gradient sound speed profile, the ray paths are found to be circular arcs.

*‘é’ The two transport equations are found to be equivalent to the first-order

25 progressive wave equations for small-signal and finite amplitude waves, d
‘If respectively. All the analysis is carried out in the time domain. )
; ’ The numerical implementation of nonlinear geometrical acoustics '
! is divided into three parts. First the ray paths are caiculated using the ray g
p tracing program MEDUSA. Next the program CALCG uses the environmental !
3 information to perform a numerical intregration along the ray path,
o thereby calculating the quantity G. The ray path information, the value G,

o and the environmental nformation are all inputs to the program PLPROP.
:::'! PLPROP uses this information to caiculate the distortion range variable, Z. ‘
e PLPROP has at its center the subroutine WAVPROP, a finite difference L
':; implementation of weak-shock theory for plane waves (Pestorius 1973). ]
g within PLPROP losses are accounted for in the frequency domain using the

i empirical relattons of Frangois and Garrision (1982). PLPROP has a variety

iﬁ of switches that allow the investigator to selectively inciude the effects of 3
5§ nonlinear distortion, ordinary attenuation, and dispersion. The finite 4
: amplitude effects may be "turned off" after a specific propagation distance
2y k

;s
\ OO \ l )
" ." ‘. ." .“.“"i .'c‘ 0\‘ 0. 4%, ‘.‘.“‘A‘.“ 4 ¥“ “ .‘ LY .'n h JA! 0 . gl “ "' ‘.’.‘ Y ‘o"'c N "w “." A 'o .'t“' ‘. " 'o"‘“"c ;‘0‘« ol o'l o'h s .‘4
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I has been reached. The output of the program is in the form of plots of the ]
%i: time waveforms and energy spectra for preselected propagation distances. E
KA ]
g The accuracy of the program was verified by comparing its resuits with 3
X those of known analytic solutions for waves propagating through a lossless h
3?2 homogeneous media. The peak pressure, the relative shock arrival time, and h
s the 1/e decay time of a weak shock with an exponentially decaying tail were |
3::3 all predicted by PLPROP to a high degree of accuracy. 4
Ef in the numerical study the effects of inhomogeneity, ordinary '
: attenuation and dispersion, and nonlinear distortion are investigated by :
4 ; considering the propagation of explosion waveforms The signals used in :
i v the investigation are a weak shock with an exponentially decaying tail E
! (exponential pulse) and a more realistic explosion waveform which includes ‘
2 the first bubble pulse. The exponential pulse is propagated 58.1 km aiong a ,
{3 ray path starting at a depth of 300 m. The more realistic waveform is :
» propagated 23 km along a ray path starting at a depth of 4300 m. f.
An exponential pulse corresponding to a 0.618 kg TNT explosion is L
j:' used to investigate the separate and combined effec's of inhomogeneity, )
u ordinary attenuation, dispersion, and nonlinear distortion. The effect of d
inhomogeneity of the ocean on nonlinear distortion 1s found to be smail. f
é Dispersion is found to play an important role in the arrival time of the peak ‘
= pressure. The propagation of a finite amplitude signal is found to depend on .
the combination of nonlinear distortion and ordinary attenuation and ;'
b gisperston. '
3‘
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& More realistic waveforms corresponding to two different

N explosions, 0.818 kg and 22.7 kg TNT, are used to quantify the answer to the

i'? question, “to what distance are finite amplitude effects important?” The

i‘ spectra of the signals obtained by numerically propagating the signals to a

o distance of 23 km accounting for ordinary attenuation and dispersion over

& the entire 23 km and acounting for finite amplitude effects as indicated

. below: :E

, Case A: finite amplitude effects neglected entirely, E;

;'3'. Case B: finite amplitude effects included only up to distance 150 m, S

o Case C: finite amplitude effects included only up to distance 1100 m, N

- Case D: finite amplitude effects included for the entire 23 km path.

o The Case D spectrum, relative to that of Case A, is lower in the middie :

. frequency band and slightly higher in the tow and high frequency bands. A ;

L small downward shift of the spectral peaks in the low frequency band Is
also noted. For the one ray path and waveform considered, finite amplitude

3 effects are found, In the case of 2 0.818 kg TNT explosion, to be of small :

::: consequence for frequencies below 6 kHz and distances beyond {100 m. For :.3

: 3

a 22.7 kg TNT explosfon the corresponding quantities are frequencies below
4 kHz and distances beyond 1100 m.
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APPENDIX A =
{
RAY COORDINATES AND THE EXPRESSION FOR V2¥ "
In this appendix ray coordinates are defined, and it is shown that
V2¥=A,"" 3(A,/C,)/ S, Where A, 1S the area of the ray tube, C, IS the A
smali-signal sound speed, and s Is the distance along the ray path. Tne 7]
expression for V2¥ is required to simplify the transport equation, \{
Eq (3-C.19). To derive the expression, we use tensor analysis and a
nonorthogonal coordinate system called ray coordinates (see, for example,
Pitre 1984, p. 54). General introductions to tensor analysis may be found in ,
standard texts such as those by Sokolnikoff (1964) and Synge and Schild i ’
(1978).
The mathematical development proceeds as follows. The ray “:‘
coordinate system and the Jacobian of the transformation from Cartesian '
coordinates to ray coordinates are found. It is then shown that the
determinant of the Jacobian is related to the ray tube area. Next the 2
covariant and contravariant forms of the metric tensor for the ray 3
coordinate system are found. The contravartant form of the metric tensor
and the determinant of the Jacoblan are then substituted into the definition 1
3
136 a
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S of the Laplacian for a general coordinate system. The desired result for
5 V2¥ follows directly.
'-'ﬁ We define some notation: Let us denote the determinant of a

e tensor by the same symbol, but without indices; for example, |Ali] is

R , . '

Lo denoted A. Let x', where | = 1, 2, 3, stand for the rectangular Cartesian

‘\-f':
R coordinate system, that is, x' = x, x2=y, x3=2. Let x" stand for ancther set
Ay of coordinates, ray coordinates, namely x'=s, x2=4¢, and x3 = ¢, where s
'::?: 3 is the distance along the ray path, and ¢ and g are the ray launch angles

e
Vo with respect to the x and z axes. Both the ray coordinate system and the
e Cartesian system are shown in Fig. 3.2. Ray coordinates may be thought of
e
58 as a coordinate system based on the path of a particie through space.
i

Ly A physical understanding of the transformations between the two
R0 coordinate systems is sought. We define the coordinate transformations as
e follows:
) Xi= %) (A1)
Wi
{ .",: and
LY X = 50 (A2)
ey

il "
P The Jacobian Ji. of the transformation from Cartesian coordinates to ray
-& coordinates is
s
g gy ox/ds dy/ds dz/ds
P~ a= & =loxae ayae az/ae| - (A3
s % |axay oydy dz/dy
&
S

e Let T be the derivative of the ray path position vector r (seeFig. A.1):

T

14:}.
Ro- 4
R
S+ el
o

)

3
AN LA N T AT R R O T AN Y A L TRty 0 Bt T T T Y P U S S TN
g:"_ Xalh :‘ [ ) ) o b, l. o “' g ) » .-"I. "' M\.ﬂﬁ‘f* ..I.. . AT " AT » -.

uuuuuuuu



138

FIGURE A.1
THE DERIVATIVES OF THE RAY PATH POSITION VECTOR
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T-= (a—s' 3 5-8-) » (A.4)

where the bracketed terms are the components in the x, y, and z directions.
The derivatives with respect to the launch angles ¢ and y, denoted V, and

V,, are defined as follows:

_ [ox 9y 2z

Ve = (--“ 3 _34’) , (A5)
_[ox oY az\

V,= (aq’, " bw) (A.6)

Recall from vector calculus that the magnitude of the vector product,

B x C, equals the area of the paralielogram defined by B and C. The vector
product of V, with V, defines a cross-sectional area of the ray tube. The
scalar triple product, T-( V, x V,), defines A,, the cross-sectional area of
the ray tube normal to the direction of propagation. As can be seen from
EQ. (A.3), the scalar triple product is also equal to the determinant of the
Jacobian:

Jo= ||
=T-(V,x V,)
=Ay . (A7)

‘r" I's - W W Ty W @

s o . g o vy . !p'i'\( -‘,‘\ o, “.. J'-“‘ﬂ' . ""-.'( n YA Rt ‘N"“ % AL )n\v
5!‘1‘-‘:‘5 A'!.: .‘v‘.‘tt n'? l'! s:!.:"}k.!d'! (L l.\.‘lt' .|’.|..‘l R AN N > il h' @l.» A ’a.l:!‘l‘n »". \h "F ‘u‘.‘&l.v.‘"q i':.l't s W0 W'y " AN " A




140

The Laplacian of a function f in any general coordinate system is
define: as foliows (Sokolnikoff 1964, Eq. 92.11):

v L 2 (./g g —,.) , (AB)

where f is a function iIn the original coordinate system. To use Eq. (A.8) we
" need g°, the contravariant form of the metric tensor in the ray coordinate

E
;
o
"
,"
N
’l
o

': system. To find g"s we first find the covariant form grs. Slince the

i

contravariant and the covariant metric tensors are inverses of one another,

oy
"
- .
-

:.: the contravariant metric tensor can be found from the covariant. ¢
: In a Euclidian space of three dimensions, the covariant form of the §
" metric tensor may be defined by considering an elementat distance us. It is 1
i known (Sokolnikoff 1964, Art. 29) that in a Cartesian system, the square of 3
3, the eiemental distance ds may be defined as 5
- .
“ o i
;E ds? = Zi axlax' (A.9) g
R or 3
N ds? =o' ox's; (A10) ‘
2 :
: where §;; is the covariant form of the Kronecker delta §J for the Cartesian ,
3 coordinate system. (In the Cartesian coordinate system, the contravariant
;" and covariant forms of a tensor are the same; therefore ; = 8 = §;})
:, We seek an expression for dxi to use in Eq. (A.9). It follows from :
£q. (A.1) that .
BRI AR RIS RN NSRBI 3 SNATIE R ARI R 133 43 8 Wt A R A A T S 3
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) i
dx' = (g—:;) dx" - (A11)

If Eq. (A.11) is substituted into Eq. (A.9), it can be seen that

2 bxi bxi) r.. s
ds® = — ) {—=} dx dx ~ (A12)
S z(ax')(ax" -

Equation (A.12) may be written as follows (Synge and Schild 1978, Eq. 2.102):

2_
ds®=g _dx"adx’ . (A.13)
where

il wia

Equation (A.14) is the covariant form of the metric tensor for the ray
coordinate system.

The contravariant form of the metric tensor is now sought. The

contravariant and covariant forms of the metric tensor are inverses; this
may be expressed mathematically as follows:

g o= 8L . (A15)

Use of Egs. (A.15) and (A.14) leads to the following expression for the
contravariant form of the metric tensor (Guy 1985):

(5
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L rs a)-(r) (ax5> ‘1.‘
g ; (ax’ ox’ e

! We need to know the determinant of the metric tensor. From ;,
, Eqs. (A.3) and (A.14), it can be shown that gg
r' :
2 | il 2 3

W v —IJ'N N
; - |g| 7
: . g‘i“
: g . (A17) a:
t ]
3 The general form of the Laplacian, Eq. (A.8), can now be calculated. a!
K Let the function f of Eq. (A.8) be the eikonal ¥. Examination of the
' A g
' expression (3¥/9x") yields v
i it
¥  [a¥\/[ax i
bl I wo

: i
If both sides are multiplied by g"¢, it is seen that fr

rs(b‘l’) . z (b!r) (b)_(s) ( b‘l’) (bx‘) <
o 7 \ax/ \ax!/\ ax'/ \ox' 3
- N
X
; : 3
2 =Z(§i>(ai) : (A.19)

j axi/ \ax! .
[\ ¥
;
- But from Eq. (3-D.4) it is known that :
d R
'; ¢ -'
: i
‘2' 2
: ¥
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J
¥ _ l(—a—"—) (A20)
6)(" CO ax s=1
It therefore follows that
(5 - (%) (3)
T\ " coland/ o I
=c°"[I,0,0] ) (A.21)
If Egs. (A.16) and (A.21) are substituted into Eq. (A.8), it is seen that
V2 =g ad/c )os (A22)
Use of Eq. (A.7) yields
V2¥ = AV A(AY/C ) 0s (A23)

which is Eq. (3-E.1). The Laplacian of the eikonal is proportional to the
variation of the ratio of ray tube area to the small-signal sound speed.
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& APPENDIX B

bl

R}

' THE PARAMETER OF NONLINEARITY FOR SEAWATER

§

b

!‘

;:; In this appendix the analytic formulation of the parameter of

W‘g

;i'. nonlinearity B/A (see, for example, Beyer 1974, p. 99) is discussed. Some
i empirical relations developed by Morfey (1984c) for use in the numerical

evaluation of the parameter for seawater are then presented. The
parameter of nonlinearity accounts for the curvature of the pressure-
density relationship of a fluid. It can be seen from Fig. B.1 that by moving a
) finite amount from the quiescent values of the density and pressure, p, and
s Po. the slope of the pressure-density curve changes. By definition, the

- square of the sound speed 1s equal to the slope of the pressure-density
0 curve,

33
K 2= {Q-P} . B.1)
\ % x

An investigation of the definition of the sound speed yields an analytic
expression for the parameter of nonlinearity. This expression may be

0!
’ evaluated numerically by use of empirical formuias.
"
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"' FIGURE B.1
THE NONLINEARITY OF THE PRESSURE DENSITY RELATIONSHIP
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1‘(‘ 1
In order to develop an expression for ¢, we start with the

equation of state for seawater:
P=P(pEX) , (B.2)

where £ is the salinity, and X is the entropy. Using a Taylor series

expansion and retaining terms up to second order yields

aP

2
P NE xo){—

Bn
g P=P0+An+ﬁ*(i-§o){—

(8.3)
aE} . X8 = io

ax] PEX =X,

X where

5":‘ A=p, {QE}
op XEp= o

(¥ = poc02 s (84)

2
2|3°P
ap XEp=0g

A .

’ (B.S)

s
S
-

£

s

N =(p-0y¥0p ; (B.6)

o,
Poarlp S S
E . ORI

n is called the condensation. In arriving at Eq. (B.3), we assumed that
, variations in the salinity and entropy are of second order In smaliness.
"C Equation (B.1) can be expanded by differentiating Eq. (B.3) with respect to p:

2. {QE a_'l}
n %],

=(A+Bn)p, . (B.7)

.-
P

i
A
-

or

= (A/pg)(1 + NB/A) . (B.8)
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Using a binomial expansion and retaining terms up to second order yields
the following equation:

c = (A/py)12(1 + nB/2A) . (B.9)

The next step is to determine the sound speed as a function of the
particle velocity u. In the case of progressive plane waves traveling in the
positive x direction it can be shown that

n=u/c, . (B.10)

The use of Eq. (B.10) in the case of outgoing waves in an inhomogeneous
medium deserves some attention. In the derivation of nonlinear acoustic
theory presented in Chapter 4, we used ray theory. There it is seen that an
arbitrary sound wave may be regarded as being composed of many locally
plane waves (Landau and Lifshitz 1959, p. 256). Since Eq. (B.10) is valid for
plane waves and the wavefronts in the inhomogeneous medium are locally
plane, it is assumed that, by envoking the substitution rule (Chapter 2,
Section C), Eq. (B.10) may be used to eliminate n from Eq. (B.9). Use of

Eq. (B.10) along with the definition of A, Eq. (B.4), yields the following
equation:

c=¢,+(B/2AN (B.11)

where u is the particle velocity in the direction of the ray path. inEq. (B.11)
it is seen that within the second-order approximation, the sound speed of a

finite-amplitude disturbance is the sum of the small-signal sound speed c,
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and a perturbation term (B/2A.

we now recast B/2A in a way that lends itself to numerical
evaluation. Use of the definitions of A and B, Egs. (B.4) and (B.S), leads to

the following;
2( 3 (oP
gels)

vl : (B.12)

2A
oP
203,
E.X.p hd po

Algebraic manipulation of terms held under the same constraints yields

oC
B { 0 B.13)

—_— poco _.} .
2A P roee,

Following the method of Beyer (1974, p. 100), we use the chain rule to
express the partial derivative of c, in terms of temperature and pressure.
The result is as follows:

B ad ol (%o
28 " Po% [{ap } " op), (o7 @19
LTo=0, EPp=p,

where

(T +273.15)
{91} = : (B.15)
X

oP PCp

ay is the coefficient of thermal expansion, Cp is the specific heat at
constant pressure, and T is the temperature in °C. Morfey (1984c) has

3
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:f;' developed empirical relations for the density and the specific heat at

C constant pressure. These relations are given below. Chen and Millero

:!55,% (1976) have developed an expression for oy which is valid to pressures of
iﬁ:: 100 uPa. Thus B/2A can be numerically evaluated over a wide range of

;. salinities, temperatures, and pressures.

'i?og The following is Morfey's empirical relation for the density of
?E;Egi both fresh and seawater, p(P,T,E). The relative error is typically 107%4 ror
}_ﬁ ‘j the temperature range 0° <T < 100°C and 0.5 x 10704 for the range

{» 1P <T <409C. The independent variables, their units, and the ranges over
‘;?“ which they may vary are listed below:

{(»

P = pressure (Pa) absolute 0<P<107 |,

i T = temperature (°C) zero salinity 0¢<T<100 ,

e salt water 0<T< 40 ,

ii;g.' E = salinity (%, 30 ¢S <40

13‘ The empirical equation is as follows:

E‘-ﬁ p = 1000/v (B.16)
g5 where

1 V= Vot MF (B.17)
R where

R AN S s AT (At ALTE (B.18)
}% where

o F = 3038 T ¢ Bk +P/(9.80665 x 109

.‘ +6,(P/(9.80665x 10 . (B.19)
e

lﬁ_:' The constants are defined in Table B.1.

?'”e

i
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TABLEB.1
CONSTANTS REQUIRED IN THE EMPIRICAL EQUATION FOR DENSITY

i A B; Vi Gi

0 025357x10**% 071540 x 1004 0.64575x 10*® -0.23430x 10"
1 0.14894x10%02 0.43124 x10*02

2 -0.72023x107°! -036324 x10*®

3 -0.91030x10% 024620 x10%3

10 -0.35771x10*%"  0.62851 x10*0!

11 -0.95138x 10702

PPN
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Morfey's empirical relation for the specific heat at constant pressure

TN

,- Co(P,T.E) is given below. For seawater at pressures up to 100 yPa, we
estimate Cp from

e Co = C,(T,E)+Cy[P/(9.80665 x 10%) + KE, T)
' -Co(1+ KET) (B.20)

where K =12 (bar/ °/°o) is an empirical constant which relates the

increase of C, with pressure for seawater to that for freshwater. The

o
%

e error in Cp, is typically 1094, The function C, gives the specific heat of

\ pliSty Yy 19

N

(; seawater at atmospheric pressure and is defined as follows:

’?7 Cy = Zq 5juis B TET (B.21)
W The error in this equation is typically 104 over the temperature range

§

7,:.: ‘ 0 - 40° C and over the salinity range O - 40 °/,. The function C, gives

"

;;§| specific heat of pure water and is defined as follows:

J

Sl - -1 =1 4

Ez?ﬁ:! Co = 34 Ej,w Aij T [pH*! /(9.80665 x 109)] _ (B.22)
ey

R This equation is valid for € = 0 (zero salinity) over the temperature and
. pressure ranges T =0-90°Cand P=0- 100 uPa. The relative error is
A

\ § typically 1093, The constants A;; and B;; are listed in Table B.2.
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CONSTANTS REQUIRED IN THE EMPIRICAL EQUATION FOR SPECIFIC
HEAT AT CONSTANT PRESSURE

TABLE B.2

Ajj

ij
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H UWUN D LN o

NNDNN

W WL W

0.42160 x10*%4
~0.24895 x10*0!
0.46273 x 107!
-0.22446 x 10703

~0.46649 x 10*%0
0.12204 x 10701
~0.19241 x10793
0.98686 x107%

0.12458 x 10793
~0.25157 x107%5
0.16518 x 10797
0.37555 x10710

0.42179 x 10*04
-0.34218 x 10*0!
0.97816 x 107!
-0.91609 x 10703

-0.72849 x 100!
0.19149 x 10*%0
-0.65990 x 10702
0.73197 x107%4

0.22227 %1070t
-0.27630 x 1072
0.11588 x 10703
-0.13749 x 10705
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g APPENDIX C
2
}:.::;E ANALYTIC SOLUTIONS FOR FINITE AMPLITUDE WAVES
sl VIA WEAK SHOCK THEORY
L
)
0 In this appendix the analytic solution for a weak shock with an
) 't:
é exponentially decaying tail propagating through a homogeneous medium is
,ﬁg'-i developed. The solution is used to verify the accuracy of the propagation
L
_::} routine discussed in Chapter S; the results of the numerical routine are
My
e compared with those of the analytic solution. The development proceeds as
} follows. The propagation of a finite amplitude wave through a homogeneous
5 medium is considered. A general solution is obtained for the case in which
h) " the waveform contains weak shocks. This solution is not new; see, for
Sl
:&:" example, Blackstock (1972). Since the propagation routine operates with

nondimensional variables, the solution is nondimensionalized. The

12

nondimensional solution is then applied to the particular probiem of the

]

-

A

propagation of a weak shock with an exponentially decaying tail. The

TS
- s
- ...
-,ngﬂ?

solution for this waveform is not new either (Rogers 1977; also see
Blackstock 1983).

5 Before discussing the propagation of weak shocks, we examine the
Y propagation of a continuous (i.e., no shocks present) finite amplitude wave

an 153
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" n’;!
3 through a homogeneous medium. The following equation is the exact plane ‘.
" wave equation for a gas:
! Uy * Cou, * BUU, =0 . (.1 o
i The Earnshaw solution (see, for example, Blackstock 1962, Eq. 18) satisfies ;:f
x
A Eq. (C.1) exactly. However, Earnshaw’s solution is a bit cumbersome, and o
¥ il
particularly so for problems Involving sources for which the boundary *

)

" condition is given in the form A
A i
b u=f(t) at x=0 . (C.2) i
H ¥
u It is convenient to use an approximate wave equation. Use of the :':E:
'. first-order plane wave equation and the substitution rule of Chapter 2 E‘.’g
converts £q. (C.1) into ’
% S Iy
Ly “

| U+ Co 'y, - BCy2uY, =0 (C3) A
! 3
! Use of the definition of retarded time for a plane wave, Eq. (3-C.1), ;‘;;
R )
k. transforms Eq. (C.3) into ,:S
R 4

. 3
. U, - BCy2uuy =0 . (C.49) =
:5: An equally valid expression in terms of the presssure P' is s,
3: P - (B/poCo> PPy =0 . (CS) :
X ")
X -
\ Equation (C.5) Is obtained from Eq. (C.4) by using the expression (see, for
3 example, Blackstock 1962, EqQ. 95) N
& !
Y |
|
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b
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u=P'/pyc, - BP'/20,%C,° . (C6)
The "Earnshaw solution” of Eq. (C.6) for the boundary condition
Pl=g(t)=g(t) at x=0 (C.7)
iS
P' = g(¢) (C.8)
where
¢ =t ¢ pglelx/p,cy (C.9)

By using the transforms of the independent and dependent variables given in
Table C.1, the solution presented in Egs. (C.8) and (C.9) can be used for
nonplanar geometries and inhomogeneous fluids (Blackstock 1966, Cariton
and Blackstock 1974).

TABLEC.1
DISTORTION RANGE AND TRANSFORM PRESSURE VARIABLES

V4 w
Plane X p'
Cylindrical 2Jr° Jr - ‘/ro) p' (r,,.o)w
Spherical ro An(r/ry) P' (r/ry)
Inhomogeneous Fluid Sp &n (Gs/s) pP' (Apoco/Aopc)V?

Here r is the range and r,, is the reference range. If the boundary condition
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t ke e o o e

p is
%
: wW=g(t) at Z=0 |, (C.10)
4 the general solution to a second approximation is as follows:
5 ;
3 Weg®) | €1 ;
where .
; ¢ =t + gle)pZ/p,cy® - (C.12) ::
" .
: This solution is referred to as the generalized approximate Earnshaw '5:
“ solution. f
5 We now discuss weak shocks within the context of the Earnshaw
K solution. The approximate Earnshaw solution is valid on either side of a ,?
; weak shock; knowledge of the shock strength allows one to tie the two :r
y Earnshaw solutions together. The relative arrival time of the shock is, b
. however, unknown; we therefore seek an equation for the relative shock .‘
g arrival time. It turns out, however, that we must first find an expression ‘
SE for the shock velocity. 0
§ Application of the equations of hydrodynamics to a propagating F
, weak shock leads to an equation for the shock velocity. Consider a plane :
: weak shock propagating through a homogeneous fluid. The fluid ahead of the _ :_

‘; shock is assumed to be undisturbed; its properties are denoted by the

NS subscript a. The properties of the fluid behind the shock are denoted by the o
:‘ subscript o. If the continuity, momentum, and energy equations are applied ;;_‘
3 ]

to the control volume moving with the shock velocity V,, several relations,

g
-

called the Rankine-Hugoniot shock relations, can be derived:
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OV ~ W) = 0,Vy (C13)
Py=Pet PVey (C.14)
Vg2~ BU Vg ~Cp2=0 . (C.15)

Following Blackstock (1972), we solve Eq. (C.15) for an approximate
expression for the shock velocity V:

Vg = Co* BU/2 (C.16)

If the particle velocity in front of the wave had been the nonzero vaiue u,,
the following equation would have obtained:

Vg = Co * BlY, +1,)/2 . (C17)

Since the particle velocity both ahead of and behind the shock are known
from the two Earnshaw solutions, the shock velocity can be calculated.

Use of the expression for the shock velocity, Eq. (C.17), leads to an
expression for the relative shock arrival time. Still following Blackstock,
we assume that the shock first occurred at time t and position x. The
current position and time of the shock are denoted by X, and t,,

respectively, where
ty, =L+ I!dx/Vsh . (C.18)

If a binomial expansion is used and terms up to second order are retained,
Eq. (C.17) may be expressed as

AN [ *‘(.. N, !, A SRR .. ( v ‘,‘(“"(r.:\,\l' .;-, ‘:' " A
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1/V,, = 1/co - Blu, + U,/ 2c2 . (C.19)

Substitution of Eq. (C.19) into Eq. (C.18) and simplification of the result
using the definition of the retarded time variable, Eq. (3-C.1), as well as the
progressive wave impedance relation, yields

Vg =L -~ (B/204co®), (P, + P ) dx . (C.20)

The above equation can be expressed in the terms of the transformed
independent and dependent variables, W and Z, since the Rankine-Hugoniot
relations are invariant under the tranformations (Blackstock 1966,
Appendix A). Restating Eq. (C.20) in terms of W and Z gives

t'sh =t - (p/2p°co3) Iz (W, +WwW)dz . (C.21)
The differential form of Eq. (C.21) iIs
dt'sh/dz = -p(W, + w.)/2p°co3 ) (C.22)

Equations (C.21) and (C.22) give the relative shock arrival time. Other
useful relations regarding the relative shock arrival time are obtained
from the solution for the propagation of continuous waves, Egs. (C.11) and

(C.12). By noting that the value of W is different before and after the shock,
we obtain the following :

t'y = &~ (BZ/pCo%) 9e) (C.23)

Uy = ¢, - (BZ/0oCo%) e, (C.24)
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As was mentioned earlier, we are developing this solution to
compare with the results of the propagation routine. Since the computer
algorithm operates on nondimensional variables, we nondimensionalize the
solution. This is done using characteristic dimensions of the problem. The

nondimensional variables are defined below:

V=W/P,y (C.25)
r=t/t, (C.26)
v=tt, (€27
0 = BWol/PoCot, » (C.28) .
P=¢/t, , (C.29) :
€= P'/pgC? | (C.30) '
G(E) = g(¢)/Py (C31)

where t_is a characteristic time, and P', is the reference pressure
amplitude. In terms of the nondimensional variables, the nonlinear wave J

equation and its solution are expressed as foliows: g

Nonlinear wave equation Vg-VVpe=0 (C.32) L
Boundary condition V=0(t) at 0=0 , (C33)
]

Continuous wave solution VvV =06(3) , (C.34)
where 3
=1 +06() |, (C.35) ;
Relative shock arrival time t'sh =1 - 172 ]l (V,+ V)do (C.36) ‘

3
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; dt'y/do = -1/2(V, + V,) . (C37)
;:f "
o We now use the nondimensional solution to solve for the relative
§; shock arrival time, the shock amplitude, and the 1/e decay time of a weak
‘\‘.,
:E; shock with an exponentially decaying tail. The boundary condition for the

& waveform is as follows:
:'l
E': P'=Aexp (-t/TH(L) at r=ry, , (C.38)
N which converts to
! W=Aexp(-t/TH(t) at Z=0 , (C.39)
0
".;I where H(t) is the step function. Expressing the boundary condition in terms
I.‘
" of the nondimensional variables yields
\{Q‘
i§ V=exp(-DHt) at 6=0 , (C.40)
.
g where the characteristic values t. and W, are defined to be T, and A,
‘,; respectively. Use of Egs. (C.34) and (C.35) leads to the solution to the

o
,E continuous portion of wave:
Q@
- V=exp(-8) |, (C.41)

X where

5 =t +0exp(-3) . (C.42)
,2; We now solve for the shock amplitude. Considering only the shock,
f:-: we may write Egs. (C.41) and (C.42) as follows:
)
i Vy=exp(-3) (C.43)
% ‘f
o ;
i 3
: :
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e
o g =, 0V, . (C.44)
A.;‘ESA
B
:;s: Taking the natural logarithm of Eq. (C.43), and then substituting the result
i into Eq. (C.44) and rearranging, we obtain the following:
:E::EE Uy = -lanlv) +ov,) . (C.45)
i)

By taking the derivative of Eq. (C.45) with respect to ¢ and using Eq. (C.37)
e
gﬁ}% noting that V, is equal to zero, we arrive at the following expression:
Loty
U
“ 12V, +(1+0V) dV,/do =0 . (C.46)
b ~
3‘:3, If Eq. (C.46) is integrated with respect to g, noting that the integration
‘ constant must be chosen to fit the boundary conditions, a quadratic equation
with the following roots is obtained:

‘ Vy=l-1¢ J(1+20)/0 . (C.47)
2
, ~£ The positive root in Eq. (C.47) allows the boundary condition, V, = 1 at ¢ =0,
%s to be recovered.
i We now solve for the relative shock arrival time. We start by
3' 3 substituting the positive root of Eq. (C.47) into Eq. (C.36), again noting that
i» V, is zero. If the starting time of the shock is assumed to be O, the result
e
X is as follows:
=",
b Uy, = [V, ¢+ ov,] . (- 48)
h
i
o The expression for the 1/e decay time is obtained using £qs (" 47)
3
1
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and (C.48). The 1/e decay time is defined as the time required for the puise
to decay to 1/e of its current value, Vy/e. Substitution of V,/e for V, in

Eq. (C.48) yields the relative time of the 1/e point of the waveform. The
following expression for the 1/e decay time is obtained by subtracting the

relative time of 1/e point from the relative shock arrival time,

Uy =-l1+0V,(1-1/e)] | (C.49)

where t', . is the 1/e decay time.
In summary we have found the solution for the shock amplitude,

the relative shock arrival time, and the 1/e decay time of a weak shock
with an exponentially decaying tail, Egs. (C.47), (C.48), and (C.49),
respectively. This information, coupled with the definitions of W and Z
described in Table C.1, permits us to calculate the shock amplitude, relative
shock arrival time, and the 1/e decay time independent of whether the wave

is plane, cylindrical, spherical, or confined to a ray tube in an

inhomogeneous medium.
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APPENDIX D
COMPUTER PROGRAM

Computer program PLPROP is a FORTRAN 4 program which
implements nonlinear geometrical acoustics. The program is described at
length in Chapter 5. The heart of the program is the pair of subroutines
WAVPROP and RESAMP which were written by Pestorius (1973). The fast
Fourier Transform routine and plotting routines, which were written at
Applied Research Laboratories, The University of Texas at Austin, Austin,
Texas, are used extensively in the program.

The Input files and other parameters required of the user are
described in the program. The computer code has a running commentary on
its function which should help the user understand operation of the
program.
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1 = (2. 0#EGRT(SPATHO)#(SGRT(RNG)-SART(SPATHO)))

140 CONTINUE

e
CALL RNOSIO(RNGFUT, DISNDP, SPATHO, WAVTYP, SIQFUT)
DELS10 = SIOFUT - 810

110 CONTINUVE

DDSI10 = DELSIO/(AINT((DELSIC/DDS10Q1)+0. 9))

320 CONTINUVE

Z = (SPATHO®ALOQ( (RNQ/SPATHO)#Q))

120 CONTINVE
Z = (SPATHO®ALOGQG(RNG/SPATHO))

130 CONTINUE

DDS10 = DELSIO

C0T0 320
Z = RNC

CONTINUE
130 CONTINVE

COMMON /CMRAY/ R. 8. ZETA. ZETAP. D, DP. DPl:'o SINTH. COSTH. CCOC, ¢

SUBROUTINE RNOSIO(RNG, DISNDP, SPATHO, WAVTYP, §10)

1IF (GARB .OT. 0.0) DELSIQ = SICPLT - SIC

CARB = (810 + DELSIO) - 8I6PLT
IF (DELS10. OT.DDSI01) 60TO 310

IF (WAVTYP.NE. 1.0) COTO 130
IF (WAVTYP. NE. 2. 0) GOTO 140
IF (WAVTYP.NE. 3.0) 0OTO 1350

IF (WAVTYP.NE. 4. 0) COTO 120

810 » Z #» DISNDP

RETURN
END
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C THIS ROUTINE CONVERTS FROM RANCE TO SICMA
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